the short summary

Probing anomalous ZZH/WWH couplings at the ILC

21th, October, 2021, T.Ogawa
on behalf of the ILD collaboration and ILC-IDT-WG3

Effective Field Theory (EFT) and anomalous ZZH/WWH at the ILC

-. Model independent test of the gauge-Higgs sector based on SMEFT Lagrangian consist of dim-6 operators. "Warsaw" basis, SU2xU1 gauge invariant, Lorentz invariant

After SSB,

$$
\begin{aligned}
\Delta \mathscr{L}_{h} & =-\eta_{h} \lambda_{0} v_{0} h^{3}+\frac{\theta_{h}}{v_{0}} h \partial_{\mu} h \partial^{\mu} h \longleftarrow \text { (Higgs) } \\
& +\eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h+\frac{1}{2} \eta_{2 Z} \frac{m_{Z}^{2}}{v_{0}^{2}} Z_{\mu} Z^{\mu} h^{2} \longleftarrow \text { (same same structure with the SM) } 053004 \text { (2018) }
\end{aligned}
$$

Variation of kinematics due to the anomalous ZZH

$$
\begin{aligned}
\mathcal{L}_{\mathrm{ZZH}}= & M_{\mathrm{Z}}^{2}\left(\frac{1}{v}+\frac{a_{\mathrm{Z}}}{\Lambda}\right) Z_{\mu} Z^{\mu} H \\
& +\frac{b_{\mathrm{Z}}}{2 \Lambda} \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu} H+\frac{\widetilde{b}_{\mathrm{Z}}}{2 \Lambda} \hat{Z}_{\mu \nu} \tilde{\hat{Z}}^{\mu \nu} H .
\end{aligned}
$$

parity-conserving interaction scalar: CP-even interaction
parity-conserving interaction pseudo-scalar: CP-odd interaction

The Higgs strahlung

$$
e^{+} e^{-} \rightarrow Z h \rightarrow q \bar{q} h \quad 250 \mathrm{GeV}
$$

b term

No Jet charge ID

bt term

Analysis: Detector effects and sensitivity to ZZH

-. Geant4 based full simulation using International Large Detector (ILD) model for the ILC.
-. All detector effects are considered by detector response matrix. Theoretical shape is smeared
-. All SM backgrounds are considered.

$$
\left.\begin{array}{l}
\chi_{\text {shape }}^{2}=\sum_{j=1}^{n}\left[\frac{N_{\mathrm{SM}} \sum_{i=1}^{n}\left(S_{i}^{\mathrm{SM}} \cdot f_{j i}^{\mathrm{Det}}-S_{i}^{\mathrm{BSM}} \cdot f_{j i}^{\mathrm{Det}}\right)}{\Delta n_{\mathrm{SM}}^{\mathrm{obs}}\left(x_{j}\right)}\right. \\
\text { shape } \quad \text { detector effects }
\end{array}\right]^{2},
$$

polar angle of Z vs helicity angle of q form Z

Theoretical shape of observables

After including the detector effects

-. qqH has significant sensitivity even w/o jet charge identification.
-. The ZZ-fusion can disentangle the correlation because of different sigh in matrix element. \rightarrow gets significant at 500 GeV .

Constraints on VVH, and comparison with HL-LHC

-. ATLAS and CMS report the sensitivity to VVH.
ATLAS (arXiv:1712.02304v2) VVH using $36.1 \mathrm{fb}-1$

$$
\begin{aligned}
& \mathscr{L}_{0}^{V}=\left\{\kappa_{\mathrm{SM}}\left[\frac{1}{2} g_{H Z Z} Z_{\mu} Z^{\mu}+g_{H W W} W_{\mu}^{+} W^{-\mu}\right]+\cdots\right. \\
&-\frac{1}{4} \frac{1}{\Lambda}\left[\kappa_{H Z Z} Z_{\mu \nu}{ }^{\mu \nu}+\tan \alpha \kappa_{A Z Z} Z_{\mu \nu} \tilde{Z}^{\mu \nu}\right] \\
&\left.-\frac{1}{2} \frac{1}{\Lambda}\left[\kappa_{H W W} W_{\mu \nu}^{+} W^{-\mu \nu}+\tan \alpha \kappa_{A W W} W_{\mu \nu}^{+} \tilde{W}^{-\mu \nu}\right]\right\} X_{0}
\end{aligned}
$$

Referring to the table10 in arXiv:1712.02304v2 $\quad\left(\kappa_{H Z Z}=\kappa_{H W W}\right)$
2sigma constraints on $\kappa_{H V V}$ is $[-0.6,4.2] \rightarrow[-0.06,0.46] @$ HL-LHC 2sigma constraints on $\kappa_{A V V}$ is $[-4.4,4.4] \rightarrow[-0.48,0.48] @$ HL-LHC
-. Our study gives the sensitivity to all dim-6 VVH tensor structures:
The full SMEFT Lagrangian is shown in PRD 97, 053004 (2018)

$$
\begin{array}{rlr}
\Delta \mathscr{L}_{h}= & \ldots & +\eta_{Z} \frac{m_{Z}^{2}}{v_{0}} Z_{\mu} Z^{\mu} h+\ldots \quad+\eta_{W} \frac{2 m_{W}^{2}}{v_{0}} W_{\mu}^{+} W^{-\mu} h+\ldots \\
& \ldots & +\frac{1}{2}\left(\zeta_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{Z Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\zeta_{W W} \frac{h}{v_{0}}+\frac{1}{2} \zeta_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{W}^{-\mu \nu} \\
& \ldots & +\frac{1}{2}\left(\tilde{\zeta}_{Z Z} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 Z} \frac{h^{2}}{v_{0}^{2}}\right) \hat{Z}_{\mu \nu} \hat{Z}^{\mu \nu}+\left(\tilde{\zeta}_{W W} \frac{h}{v_{0}}+\frac{1}{2} \tilde{\zeta}_{2 W} \frac{h^{2}}{v_{0}^{2}}\right) \hat{W}_{\mu \nu}^{+} \hat{\tilde{W}}^{-\mu \nu}
\end{array}
$$

$$
\begin{aligned}
& \sqrt{s}=250+500 \mathrm{GeV} \text { with } \quad \text { Ldt }=\mathrm{H} 20 \quad(\sim 20 \text { years }) \\
& \kappa_{H Z Z}=8.1 \zeta_{Z Z} \quad \begin{array}{l}
\text { 2sigma bound of } \kappa_{H V V} \text { is } \pm 0.026 \\
\text { 2sigma bound of } \kappa_{A V V} \text { is } \pm 0.044
\end{array}
\end{aligned}
$$

ILC can give good synergy to HL-LHC results.
The current our results do not include jet charge ID and light flavor c/s tagging. These improvements are ongoing.

Flavor-Tagging of Quark Pairs at e+e- Higgs/Top Factories Π @ Higgs21 by A. Irles

Strange Quark as a Probe for New Physics in the Higgs Sector\| @ Higgs21 by M. Basso

