

Study of photon-associated Higgs production at the ILC

Yumi Aoki(SOKENDAI), Junping Tian(Tokyo Univ.) , Keisuke Fujii(KEK), Sunghoon Jung(Seoul National Univ.), Junghwan Lee(Seoul National Univ.)

2021.10.20(Wed) @Software&Analysis mtg

1.Motivation

Find new physics via $h\gamma\gamma$ and $h\gamma Z$ couplings

 $h\gamma Z$ coupling in the Standard Model (SM) is a loop induced coupling. \rightarrow We expect BSM amplitude can be larger than SM amplitude.

We are the first to study the hyZ coupling bond using $e^+e^- \rightarrow h\gamma$

Any deviation of the coupling constants from SM signals new physics.

In this talk, we will report the simulation results of cross-section at ILC and the constraints such as model independent and $h\gamma z$ coupling constant.

2. Theoretical framework for our analysis

3. Experimental Method

cross section of $e+e- \rightarrow \gamma H$

The effective field theory (EFT) Lagrangian (model-independent)

effective hrZ coupling effective hrr coupling

$$L_{\gamma H} = L_{\rm SM} + \underbrace{\zeta_{AZ}}_{v} A_{\mu\nu} Z^{\mu\nu} H + \underbrace{\zeta_{A}}_{2v} A_{\mu\nu} A^{\mu\nu} H$$
Aµv, Zµv : field strength tensors v: vacuum expectation value

Phys.Rev. D94 (2016) 095015

 $\frac{\sigma_{\gamma H}}{\sigma_{SM}} = 1 - 273\zeta_A - 201\zeta_{AZ} \qquad (eLpR)$ $\frac{\sigma_{\gamma H}}{\sigma_{SM}} = 1 + 492\zeta_A - 311\zeta_{AZ} \qquad (eRpL)$

Since ζ_A is already constrained by measurement of $h \rightarrow \gamma \gamma$ branching ratio at LHC, we can extract ζ_{AZ} parameter by just measuring cross section for a single beam polarization.

4. Simulation framework

- √s=250 GeV
 Integrated Luminosity: 2000 fb⁻¹
 (900 fb⁻¹ each for Left / Right handed pol.)
- background : 2f,4f (DBD sample)
- ISR and Beamstrahlung effects are included
- ILD full simulation (Mokka)
- Geant4 based, realistic detailed detector model
- Full reconstruction chain from detector signals to 4-vectors (iLCSoft v01-16-02/ MarlinReco, PandoraPFA, LCFI+, Isolated photon finder, jet clustering)

h→bb

For h \rightarrow WW* fully-hadronic : number of decay w to qq=2

h→WW* _fully_hadronic h→WW* semi leptonic

8

5. Signal Significance

Left	2f	4f	total bg	Signal	Significance
Expected	1.0×10^{8}	3.7×10^{7}	1.4×10^{8}	1.1×10^{2}	9.0×10^{-3}
Pre selection	$2.8{ imes}10^7$	$1.6{ imes}10^6$	$2.9{ imes}10^7$	$9.9{ imes}10^1$	1.8×10^{-2}
b likeliness >0.77	$2.2{ imes}10^6$	$2.1{ imes}10^4$	$2.2{ imes}10^6$	$9.0{ imes}10^1$	$6.0 imes 10^{-2}$
Emis < 35	$1.9{ imes}10^6$	$1.6{ imes}10^4$	$1.9{ imes}10^6$	$8.2{ imes}10^1$	$5.9 imes 10^{-2}$
mvabdt > 0.025	$1.9{ imes}10^4$	3.2×10^2	$2.0{ imes}10^4$	3.4×10^{1}	2.4×10^{-1}
$-0.92 < \cos\theta_{\gamma} < 0.92$	$1.2{ imes}10^4$	$1.3{ imes}10^2$	$1.2{ imes}10^4$	$2.9{ imes}10^1$	2.6×10^{-1}

Right	2f	4f	total bg	Signal	Significance
Expected	7.3×10^{7}	4.6×10^{6}	7.8×10^{7}	1.1×10^{1}	1.3×10^{-3}
Pre selection	2.3×10^{7}	4.7×10^{5}	2.3×10^{7}	1.0×10^{1}	2.1×10^{-3}
b likeliness>0.77	$1.4{ imes}10^6$	9.3×10^{3}	$1.5{ imes}10^6$	$9.4{ imes}10^{0}$	7.8×10^{-3}
Emis < 35	$1.3{ imes}10^6$	$7.7{ imes}10^3$	$1.3{ imes}10^6$	8.4×10^{0}	$7.5 imes 10^{-3}$
mvabdt > 0.025	$1.0{ imes}10^4$	2.1×10^2	$1.0{ imes}10^4$	$3.4{ imes}10^{0}$	3.4×10^{-2}
$-0.92 < cos \theta_{\gamma} < 0.92$	$5.9{ imes}10^3$	$5.7{ imes}10^1$	$5.9{ imes}10^3$	3.0×10^0	3.9×10^{-2}

h→bb

5. Signal Significance

Left	2f	4f	total bg	Signal	Significance
Expected	1.0×10^{8}	3.7×10^{7}	1.4×10^{8}	1.8×10^{1}	3.4×10^{-3}
Pre selection	1.3×10^{7}	$7.5{ imes}10^5$	$1.3{ imes}10^7$	$1.0 imes 10^1$	3.6×10^{-3}
of charged particle> 3	$7.8{ imes}10^4$	$2.3{ imes}10^5$	$3.1{ imes}105$	5.4	9.8×10^{-3}
$ m_{W1} - 80.4 < 10 \ GeV$ $ m_{W2} - 80.4 < 9.4 \ GeV$	$2.5{ imes}10^4$	$1.6\!\times\!10^5$	$1.9{ imes}10^5$	3.7	$8.6{\times}10^{-3}$
b likeliness<0.77	$1.7{ imes}10^4$	$1.6{ imes}10^5$	$1.8{ imes}10^5$	3.7	8.7×10^{-3}
mvabdt > 0.1	3.1	$3.8{ imes}10^1$	4.1×10^1	1.0	1.6×10^{-1}
-0.93< $\cos\theta_{\gamma}$ <0.93	0.0	8.4	8.4	$9.5{\times}10^{-1}$	3.1×10^{-1}

Right	2f	4f	total bg	Signal	Significance
Expected	7.3×10^{7}	4.6×10^{6}	7.8×10^{7}	1.9	4.8×10^{-4}
Pre selection	1.2×10^{7}	3.1×10^{5}	1.2×10^{7}	2.0	3.9×10^{-4}
of charged particle > 3	$5.0{ imes}10^4$	$3.6{ imes}10^4$	$8.6{ imes}10^4$	$1.5{ imes}10^{0}$	1.9×10^{-3}
$ m_{W1} - 80.4 < 10 \ GeV$ $ m_{W2} - 80.4 < 9.4 \ GeV$	$1.7{ imes}10^4$	$1.5{ imes}10^4$	$3.2{ imes}10^4$	$3.8{ imes}10^{-1}$	$2.1{\times}10^{-3}$
b likeliness < 0.77	$1.2{ imes}10^4$	1.4×10^{4}	$2.6{ imes}10^5$	3.7×10^{-1}	2.3×10^{-3}
mvabdt > 0.1	$5.3{ imes}10^1$	$2.1{ imes}10^1$	$7.4{ imes}10^1$	1.0×10^{-1}	1.2×10^{-2}
$-0.93 < \cos\theta_{\gamma} < 0.93$	0.0	4.7	4.7	9.3×10^{-2}	4.2×10^{-2}

8. Constraints from sigma

8. Constraint on ζ_{AZ} coupling

$$L_{\gamma H} = L_{\rm SM} + \frac{\zeta_{AZ}}{v} A_{\mu\nu} Z^{\mu\nu} H + \frac{\zeta_A}{2v} A_{\mu\nu} A^{\mu\nu} H$$

Left handed Combined Significance = 0.41 for SM

5.0 >
$$\frac{\sigma_{\gamma H}}{\sigma_{SM}} = 1 - 273\zeta_A - 201\zeta_{AZ}$$
 >0 asume $\zeta_A = 0$

 $-0.020 < \zeta_{AZ} < 0.005$

Right handedCombinedSignificance = 0.027 for SM $61.7 > \frac{\sigma_{\gamma H}}{\sigma_{SM}} = 1 + 492\zeta_A - 311\zeta_{AZ} > 0$ asume $\zeta_A = 0$

-0.195< ζ_{AZ} <0.0032

8. Comparison with LHC

8. Constraint on concrete models

σ_{hγ}L < 5.0 $\Delta R(e^+e^- o h\gamma) = rac{\sigma(e^+e^- o h\gamma)}{\sigma_{SM}(e^+e^- o h\gamma)} - 1$ σsi (95% C.L upper limit) $\frac{\sigma_{h\gamma}^{R}}{\sigma_{SM}^{R}}$ < 61.7 Inert triplet model $\sqrt{s} = 250 \text{ GeV}$ signal strength μ 8 (LHC Run-I) Inert Triplet Model $\lambda_3 = 1.5$ $m_{H^{++,+}} =$ $\Delta R(e^+e^- \rightarrow h\gamma)$ 90 GeV 100 125 150 Kanemura, et al, arXiv:1808.10268 200 2 This is the unpolarization plot \rightarrow 2.0 1.5 1.0 0.5 0 I asked theorist to provide new version -0.5 -1.0 0 of HCOUP, which can calculate cross-0.5 -0.5 0 section to prepare similar plot for each $\Delta R(h \rightarrow \gamma \gamma)$ polarization. Kanemura, et al, arXiv:1808.10268

8. Constraint on electron Yukawa coupling

The cross-section is small in the small $lcos\theta l$ region.

 \rightarrow It is very difficult to capture the photon and h in this region

because it is the pipeline of the detector.

8. cosθ Integration

9. Summary

We have performed a full simulation study of $e^+e^- \rightarrow h\gamma$ at 250 GeV ILC, using ILD detector and full 1-loop SM amplitudes.

Upper limit of e⁺e⁻ $\rightarrow \gamma$ h at $\sqrt{s}=250$ GeV, 900 fb⁻¹ (Left handed) $\sigma_{h\gamma}L < 1.0$ fb (95% C.L upper limit) (Right handed) $\sigma_{h\gamma}R < 0.6$ fb (95% C.L upper limit) Constraint on ζAZ coupling (Left handed) -0.020< ζAZ <0.005 (Right handed) -0.195< ζAZ <0.0032 Constraint on electron-Yukawa coupling $\sigma_{h\gamma}L$ (Electron-Yukawa) = 3.6×10^{-7} [fb] $\sigma_{h\gamma}R$ (Electron-Yukawa) = 5.9×10^{-7} [fb]

Future work

Constraint on concrete models (ITM)