

no ISR, no Beamstrahlung, no FSR

there seems to be some bags in my code...

```
axis =( pi4mom + recoNeuMom ).Vect().Unit();
polvec = tauUtils::getGunionPolarimeter_pi( pi4mom, recoNeuMom );
pol = polvec.Dot(axis );
```

$$
\boldsymbol{a} \cdot \boldsymbol{b}=|\boldsymbol{a}||\boldsymbol{b}| \cos \theta
$$

in this case, polarimeter vector is not a unit vector
axis $=($ pi4mom + recoNeuMom $) \cdot V e c t() \cdot U n i t() ;$
polvec $=$ tauUtils::getGunionPolarimeter_pi(pi4mom, recoNeuMom); pol $=\cos ($ polvec.Angle(axis));
$\boldsymbol{a} \cdot \boldsymbol{b} \neq \cos \theta$

$$
\text { axis }=\boldsymbol{p}_{\boldsymbol{\pi}}+\boldsymbol{p}_{\nu} \text { (unit vector) }
$$

MCPiPol[0] \{ MCPiPol[0]>-9999 \}

ConeRhoPol[0][0]:MCRhoPol[0] \{ConeRhoPoI[0][0]>-9999 \&\& MCRhoPol[0] > -9999\}

Plan

- Preparing a talk at ILCX
-Cone method and Midpoint method results
- Look at π / ρ polarimeter with high statistics.
- Run a pseudo-experiments by using π / ρ polarimeter as a template.

