Muon g-2 reconstruction + SUSY: status report

- Try to produce SUSY samples at ILC500 with Whizard2.8.5
- Theorists prepared "blr1.slha" and SINDARIN files but beam energy spread was not included
- Worked to include ISR / beam energy spread by implementing CIRCE2
- Included PYTHIA6 and TAUOLA as well
- Calculated cross-section (Xsec) for each SUSY process, and generate some events
- Working directory on KEKCC
-/home/ilc/skawada/SUSYg-2/blr1

	BLR1	BLR2	BLR3	BLR4
M_{1}	100	100	150	150
$m_{\mathrm{L}}=m_{\mathrm{R}}$	150	150	200	200
$\tan \beta$	5	10	5	10
μ	1323	678	1922	973
$m_{\widetilde{\mu}_{1}}$	154	154	202	202
$m_{\widetilde{\mu}_{2}}$	159	159	207	208
$m_{\widetilde{\tau}_{1}}$	113	113	159	158
$m_{\widetilde{\tau}_{2}}$	190	191	242	243
$m_{\widetilde{\nu}_{\mu, \tau}}$	137	136	190	190
$m_{\widetilde{\chi}_{1}^{0}}$	99	99	150	149
$m_{\widetilde{\chi}_{2}^{0}}, m_{\widetilde{\chi}_{3}^{0}}, m_{\widetilde{\chi}_{1}^{ \pm}}$	$1323-1324$	$678-680$	$1922-1923$	$973-975$
$a_{\mu}^{\text {SUSY }} \times 10^{10}$	27	27	17	17
$\Omega_{\mathrm{DM}} h^{2}$	0.120	0.120	0.120	0.120
$\sigma_{p}^{\mathrm{SI}} \times 10^{47}\left[\mathrm{~cm}^{2}\right]$	1.7	3.7	0.8	1.9
$\mu_{\gamma \gamma}$	1.01	1.01	1.01	1.01

Units in GeV
 So far, I am only working with BLR1 parametrization.

Process
$\mathrm{N}=\mathrm{L}^{*} \mathrm{Xsec}$
$\mathrm{N}=\mathrm{L}^{*} \mathrm{Xsec}$

${\widetilde{\mu_{L}}}^{+}{\widetilde{\mu_{L}}}^{-}$	-80/+30	$\begin{gathered} 99.1388 \\ +-0.0079 \end{gathered}$	396555	158622
${\widetilde{\mu_{L}}}^{+}{\widetilde{\mu_{L}}}^{-}$	+80/-30	$\begin{array}{r} 25.9426 \\ +-0.0021 \end{array}$	103770	41508
${\widetilde{\mu_{R}}}^{+}{\widetilde{\mu_{R}}}^{-}$	-80/+30	$\begin{gathered} 26.9622 \\ +-0.0021 \end{gathered}$	107849	43140
${\widetilde{\mu_{R}}}^{+}{\widetilde{\mu_{R}}}^{-}$	+80/-30	$\begin{gathered} 92.4999 \\ +-0.0072 \end{gathered}$	370000	148000
${\widetilde{\tau_{1}}}^{+}{\widetilde{\tau_{1}}}^{-}$	-80/+30	$\begin{gathered} 92.9890 \\ +-0.0063 \end{gathered}$	371956	148782
${\widetilde{\tau_{1}}}^{+}{\widetilde{\tau_{1}}}^{-}$	+80/-30	$\begin{gathered} 86.6444 \\ +-0.0059 \end{gathered}$	346578	138631
${\widetilde{\tau_{2}}}^{+}{\widetilde{\tau_{2}}}^{-}$	-80/+30	$\begin{gathered} 29.0410 \\ +-0.0033 \end{gathered}$	116164	46466
${\widetilde{\tau_{2}}}^{+}{\widetilde{\tau_{2}}}^{-}$	+80/-30	$\begin{gathered} 26.3214 \\ +-0.0029 \end{gathered}$	105286	42114
${\widetilde{\tau_{1}}}^{+}{\widetilde{\tau_{2}}}^{-}$	-80/+30	$\begin{gathered} 8.18989 \\ +-0.00062 \end{gathered}$	32760	13104
$\widetilde{\tau}_{1}^{+}{\widetilde{\tau_{2}}}^{-}$	+80/-30	$\begin{gathered} 6.48573 \\ +-0.00050 \end{gathered}$	25943	10377
$\widetilde{\tau}_{2}^{+}{\widetilde{\tau_{1}}}^{-}$	-80/+30	$\begin{gathered} 8.19128 \\ +-0.00062 \end{gathered}$	32765	13106
${\widetilde{\tau_{2}}}^{+}{\widetilde{\tau_{1}}}^{-}$	+80/-30	$\begin{gathered} 6.48553 \\ +-0.00050 \end{gathered}$	25942	10377

$1.6 \mathrm{ab}^{-1}$ is the integrated luminosity of ILC500 with $-80 /+30$ and $+80 /-30$

Problems / Questions / Next Step (1)

- When I include Pythia, it crushed.
- Up to Xsec calculation works, but not for event generation.
- I set Tauola is on, but it keeps PDG +-15 (no decay of tau) in the event.
- Solved: These are solved when I put the sentence "\$ps_PYTHIA_PYGIVE = "MDCY(C1000022,1)=0"" in sindarlin file explicitly (written in Whizard manual).

Problems / Questions / Next Step (2)

- When running TAUOLA, I got the following message.
- Subroutine fill_pyjets_spin_data: tau helicity information is not set, though polarized tau decay was requested. Most likely, the SINDARIN file does not include polarized for particles and/or not ?polarized_events=true
- Still no tau decay exist in tau events. Maybe due to this message?
- Solved: Put the sentence "?polarized_events=true" in global.

Problems / Questions / Next Step (3)

- Found $\sim 4[7] \%$ events have stable tau (no daughters of tau) in stau1+stau2-[stau1+stau1-] event.
- The biggest difference with Keita's study is with or without SUSY contribution.
- Solved: need to apply patch for PYTHIA6 (many thanks to Mikael Berggren (DESY))
- This needs: fresh download of Whizard2.8.5, apply patch to PYTHIA6, compile and install. The Whizard2.8.5 which is already installed in KEKCC is not enough to handle stau BSM world.

Problems / Questions / Next Step (4)

- How many events we want to produce and simulate?
- So far, I have generated ~x10 events (see next page).
- Samples are stored in KEKCC: /hsm/ilc/users/skawada/SUSYg2/(LCIO or STDHEP)
- How to do detector simulation?
- DELPHES? SGV? ILD full simulation?
- In any case, I need to learn how to run the jobs. Started to learn DELPHES first.
- Sometimes DELPHES does not work ---> Solved: some version difference (many thanks to Daniel), input file was too large. I will split samples every 50K events.

N_generated

Process
$e^{+} e^{-} \rightarrow$
Pol (e-, e+)
Xsec (fb)
$\mathrm{N}=\mathrm{L} * \mathrm{Xsec}$
N = L*Xsec
N_generated

${\widetilde{\mu_{L}}}^{+}{\widetilde{\mu_{L}}}^{-}$	-80/+30	$\begin{gathered} 99.1388 \\ +-0.0079 \end{gathered}$	396555	158622	1.5M
${\widetilde{\mu_{L}}}^{+}{\widetilde{\mu_{L}}}^{-}$	+80/-30	$\begin{gathered} 25.9426 \\ +-0.0021 \end{gathered}$	103770	41508	500K
${\widetilde{\mu_{R}}}^{+}{\widetilde{\mu_{R}}}^{-}$	-80/+30	$\begin{gathered} 26.9622 \\ +-0.0021 \end{gathered}$	107849	43140	500K
${\widetilde{\mu_{R}}}^{+}{\widetilde{\mu_{R}}}^{-}$	+80/-30	$\begin{gathered} 92.4999 \\ +-0.0072 \end{gathered}$	370000	148000	1.5M
${\widetilde{\tau_{1}}}^{+}{\tilde{\tau_{1}}}^{-}$	-80/+30	$\begin{gathered} 92.9890 \\ +-0.0063 \end{gathered}$	371956	148782	1.5M
${\widetilde{\tau_{1}}}^{+}{\widetilde{\tau_{1}}}^{-}$	+80/-30	$\begin{gathered} 86.6444 \\ +-0.0059 \end{gathered}$	346578	138631	1.5M
${\widetilde{\tau_{2}}}^{+}{\widetilde{\tau_{2}}}^{-}$	-80/+30	$\begin{gathered} 29.0410 \\ +-0.0033 \end{gathered}$	116164	46466	500K
${\widetilde{\tau_{2}}}^{+}{\widetilde{\tau_{2}}}^{-}$	+80/-30	$\begin{gathered} 26.3214 \\ +-0.0029 \end{gathered}$	105286	42114	500K
${\widetilde{\tau_{1}}}^{+}{\widetilde{\tau_{2}}}^{-}$	-80/+30	$\begin{gathered} 8.18989 \\ +-0.00062 \end{gathered}$	32760	13104	200K
${\widetilde{\tau_{1}}}^{+}{\widetilde{\tau_{2}}}^{-}$	+80/-30	$\begin{gathered} 6.48573 \\ +-0.00050 \end{gathered}$	25943	10377	200K
${\widetilde{\tau_{2}}}^{+}{\widetilde{\tau_{1}}}^{-}$	-80/+30	$\begin{gathered} 8.19128 \\ +-0.00062 \end{gathered}$	32765	13106	200K
${\widetilde{\tau_{2}}}^{+}{\widetilde{\tau_{1}}}^{-}$	+80/-30	$\begin{gathered} 6.48553 \\ +-0.00050 \end{gathered}$	25942	10377	200K

