

High Gradient Cryomodule

Sam Posen
ILC IDT WG2 Meeting
November 2022

HGC Collaborators:

High Gradient Cryomodule (HGC)

- Present ILC spec 31.5 MV/m (per TDR)
- Many new advances in SRF technology since ILC TDR. New treatments may enable significant reduction in ILC cost: flux expulsion, 75/120 two-step bake C, cold EP (processing sequence stays similar)
- Supported by ILC Cost Reduction R&D funds from DOE, Fermilab plans to assemble a cryomodule with cavities with new treatments.
- Goal is to reach higher gradient than has ever been demonstrated in CM test
- Aim will be 38 MV/m average gradient with $Q_0 > 1.0 \times 10^{10}$ and a stretch goal of 40 MV/m
- Achieving this would be a key demonstration of the potential for cost reduction for ILC
- Will reuse CM1, the first SRF cryomodule assembled at Fermilab in 2007 as a part of a collaboration between Fermilab, DESY, and LASA

75/120 C Bake

- Single cell cavities treated with 75/120 C bake have reached unprecedented accelerating gradients ~48-50 MV/m (~ 210 mT, TESLA shape)
- 75 C for ~4 hours, plus standard 48 hour 120 C bake consistent results in single cells, still studying origin, possibly linked to hydrides
- 50 MV/m cavity sent around for confirmation studies: Cornell, JLab, KEK, DESY

See Grassellino et al. arXiv:1806.09824

Cold Electropolishing

- In Fermilab's single cell EP facility, it was found that keeping the electrolyte cold (~12°C) would result in less heating, lower flow, and strong current oscillations
- When rough surfaces were found in nitrogen doped cavities, cold EP was implemented, and found to substantially improve surface quality
- Does cold EP improve also non-doped cavity surfaces?
- Studies needed to evaluate and improve understanding

See Furuta et al. TUP022, SRF 2019

See Grassellino et al.
TUFUA2, SRF 2019 and
Palczewski et al.
TUFUA3, SRF 2019

VTS Testing of Cavities for HGC @ FNAL

- The cavities we are working with are cavities that had achieved ILC specifications and been set aside ~10 years ago for future modules. The cavity have been subjected to the new treatment plan:
 - 900 C bake
 - Cold EP
 - 2-step 75/120 C bake
- 8 cavities so far at least conditionally qualified:

Cavity #	Cavity Name	Maximum Gradient E _{acc}
1	TB9AES011	41.3 MV/m
2	TB9ACC011	45.4 MV/m
3	TB9ACC012	36.9 MV/m
4	TB9AES003	39.8 MV/m
5	TB9ACC013	39.0 MV/m
6	TB9ACC006	43.2 MV/m
7	TB9AES018	35.0 MV/m
8	TB9RI021 (treated and tested at KEK)	36.0 MV/m
	AVERAGE	39.6 MV/m

HGC Cavities – Vertical Testing Results

- 7 cavities treated & tested at Fermilab, 1 at KEK (Omet, Umemori, et al.)
- Continued efforts on additional cavities at FNAL, JLab, & CEA, but 8 already with average gradient 39.6 MV/m

Start of Tank Welding – TB9AES003

• First 9-cell tank welding in a while (since LCLS-II pCM? Different tank design also)

Start of Tank Welding – TB9AES003

 TB9AES003, maximum gradient in vertical test prior to tank welding: 39.8 MV/m

Module Disassembly Status

- "CM01" vacuum vessel and upper cold mass removed (or will be soon)
- Will bring cavity string into MP9 cleanroom facility
- Couplers to be re-used: remove cold ends in cleanroom environment
- 6 couplers look good, 2 maybe reevaluate
- Many key items are re-usable from CM01, others will be replaced
- Use old FNAL stock of ILC He vessels (central bellows) and tuners (blade tuners), replace piezos/motors

Second Layer Magnetic Shielding

- Design by Yuriy Orlov, FNAL
- Procurement of 4 inner shields by CEA in French industry (thanks to Oliver Napoly!)
- Evaluate performance of 4 cavities with inner shields compared to 4 without

10/20/2020

Cleanroom Assembly

- Tentative timing: March 2022 (need to qualify all dressed cavities in VT, and set up string assembly)
- Collaboration planned with CEA to use COBOT for robotic assistance in cleanroom for assembly
- No quadrupole magnet: will likely use either dummy or just spool piece

High Gradient Cryomodule (HGC)

- Encouraging international participation in HGC. Contributions under discussion:
 - Cavities, cavity performance R&D, advanced cleanroom assembly techniques, magnetic shielding, cryomodule testing, and more
- Labs involved to date:

12

Jefferson Lab

R&D on cold EP/2-step bake/900 C – cavity qualification for HGC

1) Mag shield procurement, 2) cleanroom robotics, 3) cavity treatment + test

R&D on cold EP/2-step bake/900 C – cavity qualification for HGC

Original "CM01" kit, 2007

R&D on cold EP/2-step bake/900 C

High Gradient Cryomodule (HGC)

- Testing HGC will be interesting for many technical aspects:
 - Maximum gradient: with 8 cavities qualified in vertical test, can we maintain ~38 MV/m or higher in cryomodule
 - Cryogenic factors: e.g. how do external magnetic fields and cooldown impact Q₀? This was key for LCLS-II
 - RF: experience with driving cryomodule at higher gradient and evaluating scalability, resonance control

Summary

Supported in US by DOE HEP **ILC Cost Reduction Funds**

- High Gradient Cryomodule (HGC) effort to demonstrate ability of recent SRF R&D to increase E_{acc} in a real module, evaluate CM test in high gradient regime
- Inherits from efforts in ~2005-2010: re-uses existing cryomodule CM01 equipment, takes earlier ILC R&D cavities and attempts to treat them with new processes
- 8 cavities now show 39.6 MV/m average gradient conditionally qualified
- International, multi-institutional participation has been excellent so far
- Working towards assembly tentatively starting in March 2022
- Tentative plan is to test cryomodule at Fermilab's FAST facility where 1.3 GHz multi-MW klystron is already available, avoids conflicts with LCLS-II-HE & PIP-II

