IDT WG3 – MDI Activities

Detector (Tracker) Alignment in ILD*

Another trip into the past

Roman Pöschl

I am grateful to **Alexandre Gonnin** (IJCLab) who has digged out the material for me All mistakes are mine

IDT-WG3 MDI-BDS/Physis – Topical Meeting 27/1/22

Prologue

Lots information is taken from these documents

arxiv:2003.01116

International Large Detector

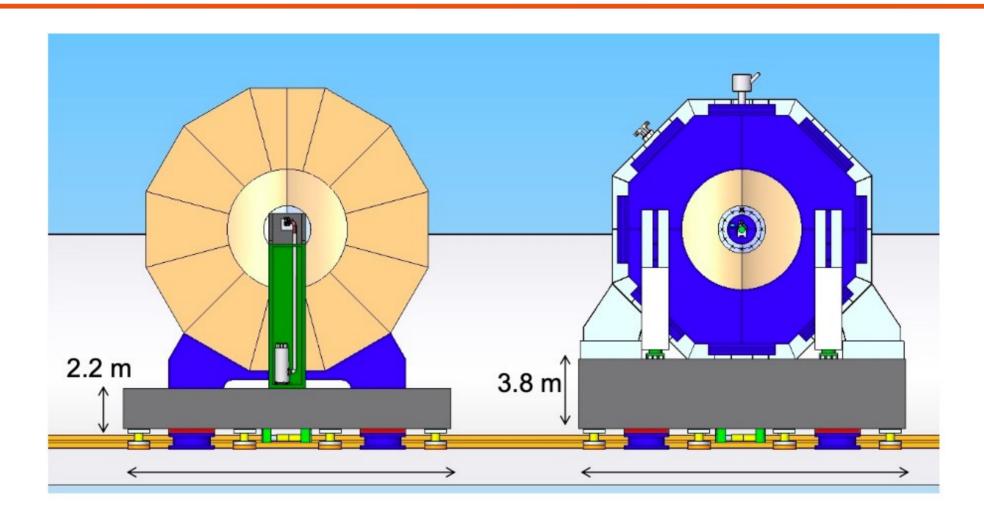
INTERIM DESIGN REPORT

The ILD Concept Group

Attached to indico page

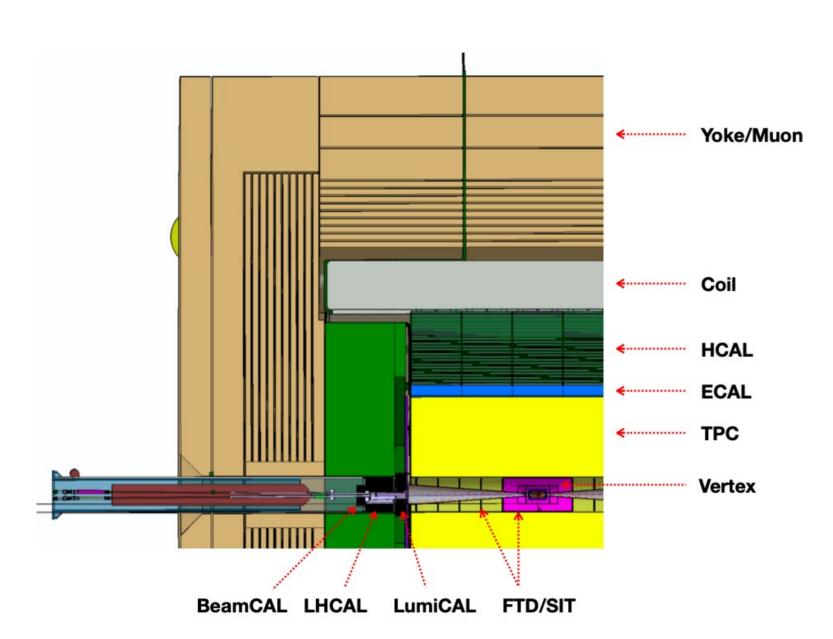
LETTER OF INTENT

Aligning the ILD Tracker: Status Report and Answers to IDAG


The ILD concept group

The ILD tracker alignment task force: T. Behnke, R. De Masi, M. Fernandez, D. Gamba, D. Imbault, T. Matsuda, P. Mereu, D. Peterson, Y. Sugimoto, A. Savoy-Navarro, R. Settles, J. Timmermans, M. Vos, M. Winter, H. Yamamoto

Detector concepts and alignment



- According to the previous documents two "operation principles" have an impact on alignment
 - Push-pull operation
 - Power pulsing of detectors
- Both may require different approaches for alignment

ILD Detector

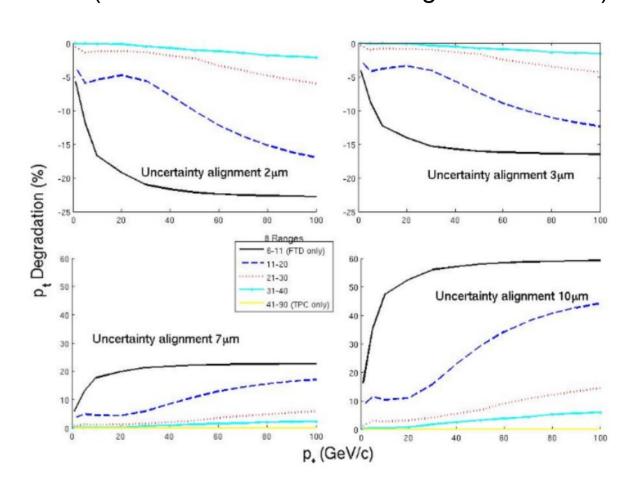
Parameters of tracking detectors

System	$r_{ m in}$	$r_{ m out}$ [mm]	$z_{\rm max}$	technology	comments	
VTX	16	60	125	silicon pixel sensors	3 double layers at $\sigma_{r\phi,z}=$ 3.0 $\mu \mathrm{m}$ $\sigma_t=$ 2-4 μs	$r_0=$ 16, 37, 58 mm (layers 1-6)
SIT	153	303	644	silicon pixel sensors	2 double layers at $\sigma_{r\phi,z}=$ 5.0 $\mu \mathrm{m}$ $\sigma_t=$ 0.5-1 μs	r= 155, 301 mm (layers 1-4)
TPC	329	1770 1427°	2350	MPGD readout	220 (163^s) layers $1 \times 6 \text{ mm}^2$ pads	$\sigma_{r\phi}$ $pprox$ 60-100 μm
SET	1773 1430°	1776 1433 ^s	2300	silicon strip sensors	1 double layer at $\sigma_{r\phi}=$ 7.0 $\mu \mathrm{m}$	$r=$ 1774 mm $\phi_{ m stereo}=$ 7 $^{\circ}$

End cap system											
System	z_{min}	$z_{ m max} r_{ m in} \ [{ m mm}]$	$r_{ m out}$	technology	comments						
FTD	220	371	153	silicon pixel sensors	2 discs	$\sigma_{r\phi,z}=$ 3.0 $\mu {\sf m}$					
	645	2212	300	silicon strip sensors	5 double discs	$\sigma_{r\phi}=$ 7.0 μm $\phi_{ m stereo}=$ 7 $^{\circ}$					

Envisaged resolution sets boundary conditions for needs on alignment

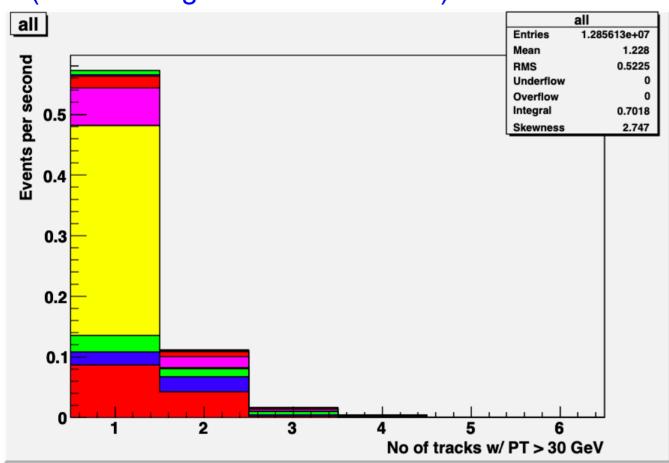
Remark: Do focus on trackers here but I don't forget that also the calorimeters in particular The LumiCal need a "diabolic" precision (see Wolfgang's talk in earlier meeting)



Misalignment – Limits and effects

- coherent displacement of the VTX, 2.8 μm ;
- coherent displacement of the SIT, 3.5 μ ;
- coherent displacement of the SET, 6 μm ; and
- coherent displacement of the TPC, 3.6 μm .
- + distortions that results in a sagitta in the TPC of 20um
- "Intrinsic alignment" of the detecotors has to be controlled extremely well
- Reduction of degrees of freedom from ~100000 to 26

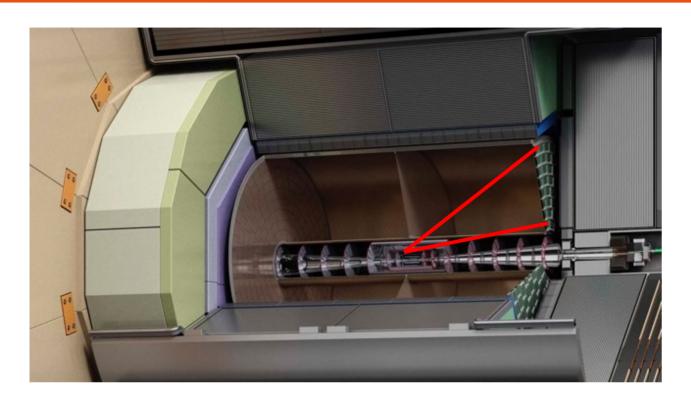
Effect on misalignment of forward disks (relative to "tolerated" misalignment of 5um)

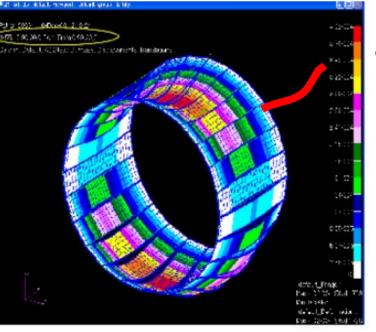

Mis-alignment +/- 2um around "tolerated" value changes track resolution by ~30%

Alignment Methods – Track based alignment

Number of tracks for 500 GeV running (color coding see attached note)

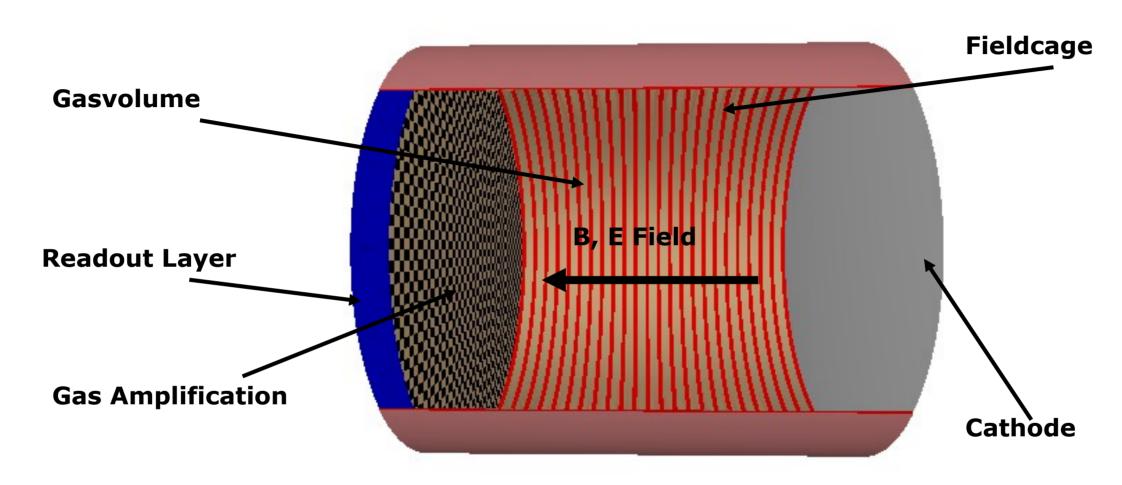
- ~10⁶ tracks with $p_T > 30 \text{ GeV (for L=}2x10^{34} \text{ cm}^{-2}\text{s}^{-1})$
- Compare with 60000 muon pairs/running year
- At 250 GeV maybe some more but number of hard tracks should decrease
 - Needs to be studied


Z-pole running for alignment?


- Short (~1 day) running on Z pole after each push-pull operation
- L=1pb⁻¹ <=> 30000 Z events yielding around 1000 muon pairs
 - Felt to be feasible in IDAG Document
- Caveats
 - Not enough for full calibration
 - Requires that machine can switch quickly between Z pole running and nominal running

Alignment Methods – Laser based alignment

 Fibre Bragg System to monitor deformations


- Laser Based System
- Crosses layers in inner silicon dectors
- Require special pixels in outer silicon detectors

- Optical alignment system have to receive a a special attention due to the limited capacities for track based alignments
- They have to react quickly (Order of seconds) to impact during push-pull and on power pulsing
- The integration of the alignment system requires skillful engineering work
- Misalignment can compromise the precision measurements
 - Corrective measures if a misalignment is measured?

Alignment Methods – Alignment of ILD TPC

- TPC components can be manufactured to a precision of 60um and better
- Laser system to mimick straight tracks
- Light shone on cathode surface to create a charge pattern with the help of an appropriate coating
- Don't forget that a precise field mapping of of B-Field is required dB/B ~10⁻⁴

Summary and outlook

- Short and for sure highly incomplete overview on ideas and studies on the alignment of the ILD Detector
- Alignment strategy needs to take push-pull and power pulsed operation into account
- Limited possibilities for track based alignment
 - Relatively small statistics
 - Alignment with Z-Pole events requires flexibility of machine
- Precise and fast reacting optical alignment systems will become of paramount importance
- The capability to align the detectors after push-pull will have an impact on the operation mode of the Project
- News: The preparation of today's meeting brought us in contact with Armin Reichold (Oxford)
 - Achim developed and commercialised an alignment system for ATLAS and has recently implemented an alignment system at FAIR (I don't know details at the moment)
 - Meeting with Achim on Feb. 2nd 5pm CET
 - Thanks to Tom and Phil for having established this contact

Backup