WG3 MDI BDS/Phys. Meeting series Brief summary and the way ahead

Roman Pöschl

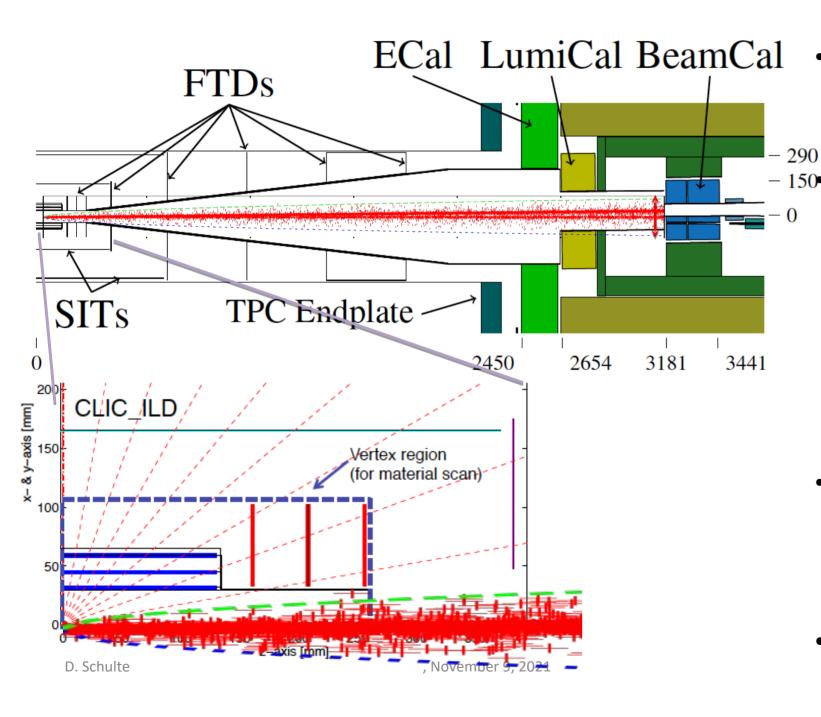
IDT WG3 BDS/Phys Summary Meeting – February 20

universi PARIS-SACLAY

- We are at the end of a meeting series that revisited (still non-exhaustively) results/work relevant for MDI **BDS/Physics issues**
- Allow me to thank the participants and those who gave presentations, asked questions animated discussion
 - This turned this series into a quite successful event
- Let me also thank the "Core Team" Jenny, Benno, Claude, Karsten, Tom and Yasuhiro for their guidance during the last months.
- Today I will focus on the meetings at and after the ILCX and in particular on the way ahead

- 17/9/21 Layout of MDI region
- 30/9/21 Software for and precision of/for background studies
- 14/10/21 L*
- 26/10/21 Intermediate report at ILCX
 - https://agenda.linearcollider.org/event/9211/contributions/49151/
 - Recommend to look also at "Lessons learned" session at ILCX
 - https://agenda.linearcollider.org/event/9211/sessions/5269/#20211027
- 25/11/21 Beam calorimeters
- 09/12/21 Beam pipe and vertex detectors
- 06/01/22 Polarimetry and beam energy measurements
- 13/01/22 Beam dump and detector magnets
- 27/01/22 Detector alignment after push pull
- 10/2/22 Summary session
- 11/02/22 ...
 - Concluding phase

- 25 talks
- ~40 people on mailing list


https://agenda.linearcollider.org/category/270/

• Average attendance of meetings: 15 people

All belongs together ...

Summary plot from D. Schulte talk on Guinea Pig

- supported
 - Support "ensured" by ECFA Higgs Factory Study/Muon Collider

Guinea Pig includes 150

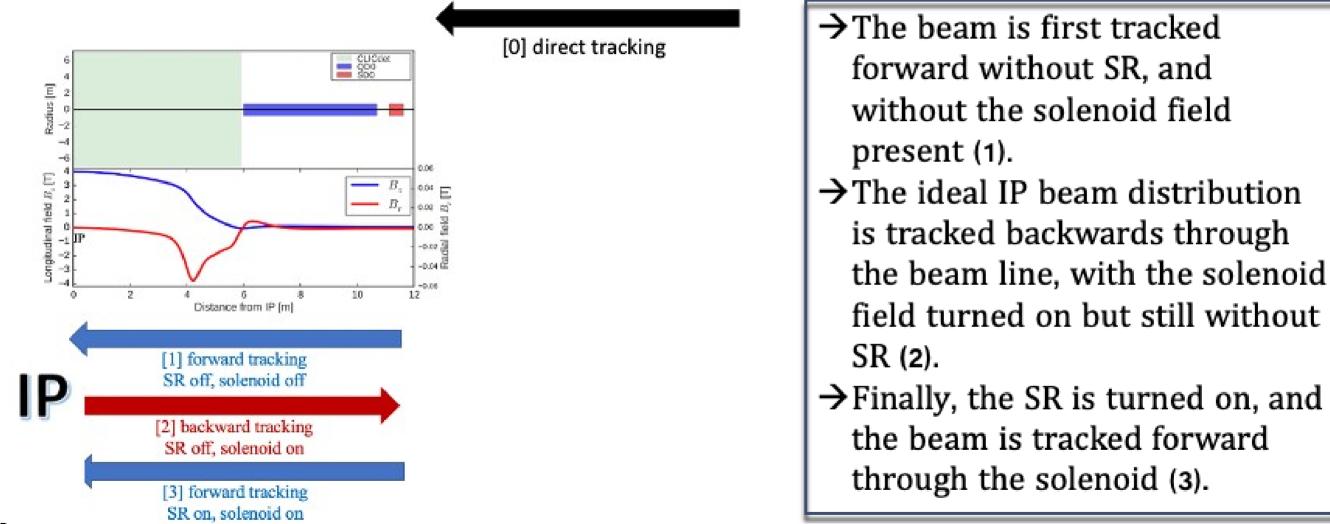
- Pinching of the beams
- Emission of beamstrahlung
- Initial state radiation
- Production of incoherent pair background
- Bremsstrahlung
- Beam size effect
- Production of coherent pair background
- Production of hadronic background (also minijets)

• GUINEA-PIG++ (maintained?) also includes

- Beam polarisation
- Trident cascade process
- but no hadrons

Observations

- Background limits vertex detector
- Defines forward region detectors


• Guinea Pig is our working horse for background studies and actively

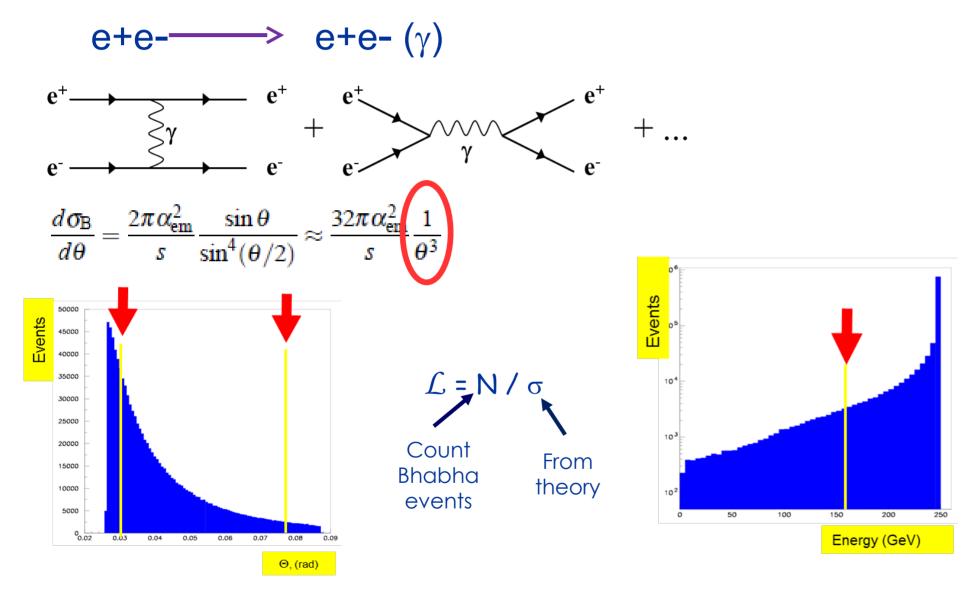
PLACET - A tool to study interaction Detector Magnet Beam

Update of the CLIC 3 TeV performance including the detector solenoid effects

Tracking procedure in PLACET* including the detector solenoid map ۰

* Y. Inntjore Levinsen, B. Dalena, R. Tomás, and D. Schulte. «Impact of detector solenoid on the Compact Linear Collider luminosity performance». Phys. Rev. ST Accel. Beams 17, 051002 – Published 27 May 2014; Erratum Phys. Rev. ST Accel. Beams 17, 079901 (2014)

Vera Cilento



the beam line, with the solenoid field turned on but still without

Bhabha scattering at low polar angles is used as a gauge process

Theory uncertainties at higher energies at ILC/CLIC (S. JADACH, FCAL workshop Cracow 2006):

...for polar angle range 25 – 100 mrad:

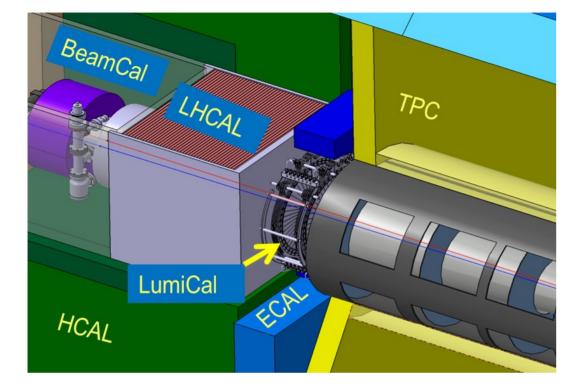
- Hadronic vacuum polarisation
- QED photonic corrections
- Light fermion pairs

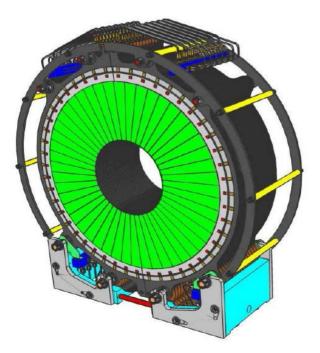
Further challenges: Beamstrahlung luminosity spectrum

This slide represent the need for theoretical input and the need of tight interplay with physics studies

W. Lohmann/M. Idzik/V. Ghenescu

IDT WG3 MDI BDS/Phys. Recap-Feb. 2022




EW corrections to Z (t-channel)

• Precision of luminosity is open question

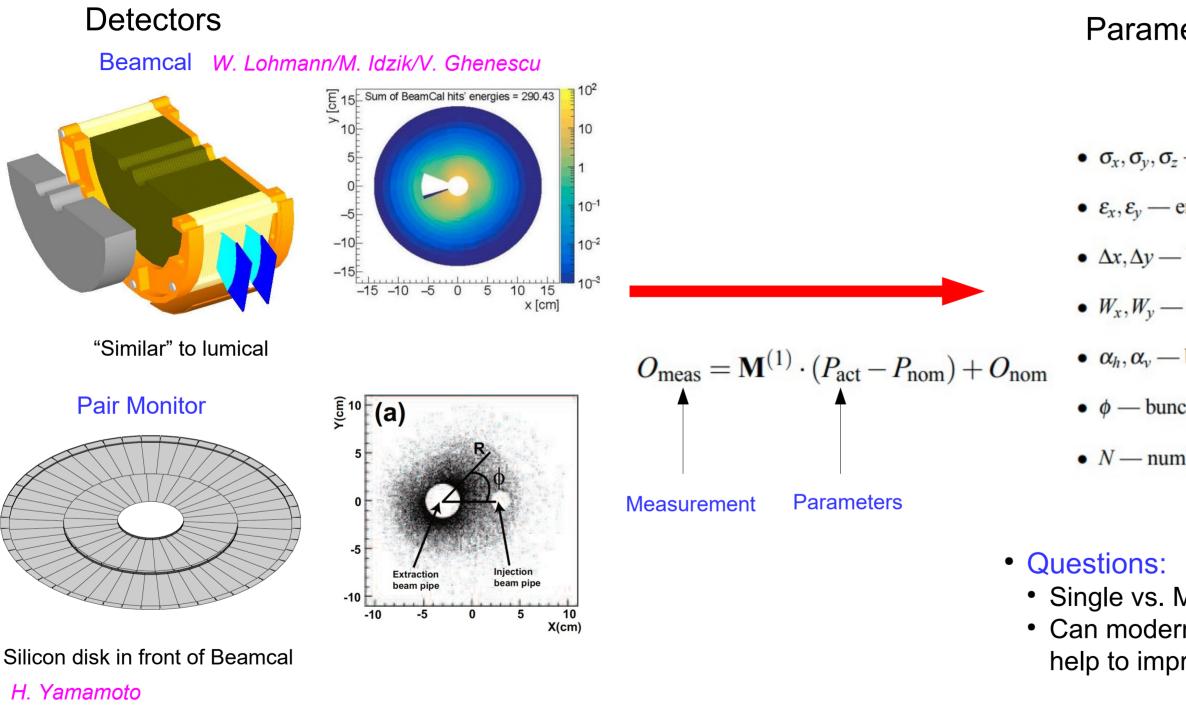
• General feeling is dL/L ~10⁻³ in continuum • At least Z-pole running would require better precision

LumiCal

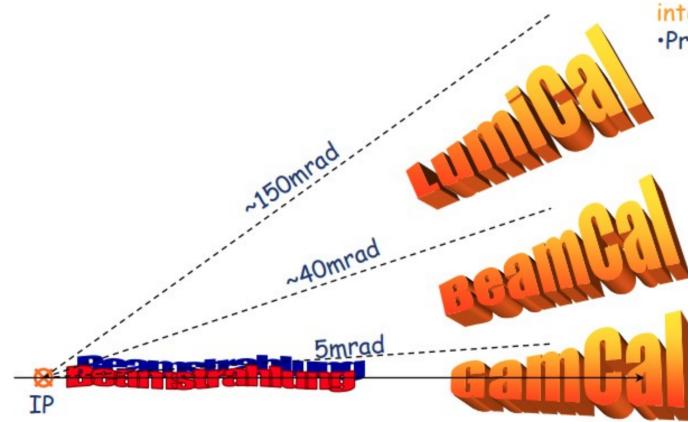
- Si or GaAs/W sandwich calorimeters
- Compact (small Moliere radius)
- Thin detector planes
- W plates, 1 X, thick, highly planar

Recent (=last years to now) developments

- Beam tests with prototypes
- Development of dedicated front end electronics (FLAME ASIC)
- Able to "digest" high event rate during ILC bunch trains
- Detector developments continues in frame of LUXE Experiment at DESY
- Similar observation hold for BeamCal (see next slide)
- Strong theta dependance requires precise alignment of detectors
- Comment during sessions:
 - Bunch-by-bunch luminosity would be very useful tool


W. Lohmann/M. Idzik/V. Ghenescu

Beam diagnostics


Parameters to be measured:

- $\sigma_x, \sigma_y, \sigma_z$ bunch sizes in x, y and z
- $\varepsilon_x, \varepsilon_y$ emittances in x and y
- $\Delta x, \Delta y$ beam offsets in x and y
- W_x, W_y waist shifts, horizontal and vertical
- α_h, α_v bunch rotations in horizontal and vertical planes
- ϕ bunch rotation around the beam axis
- N number of particles per bunch

Single vs. Multi-parameter determination
Can modern tools e.g. machine learning help to improve the measurements?

Forward region Summary

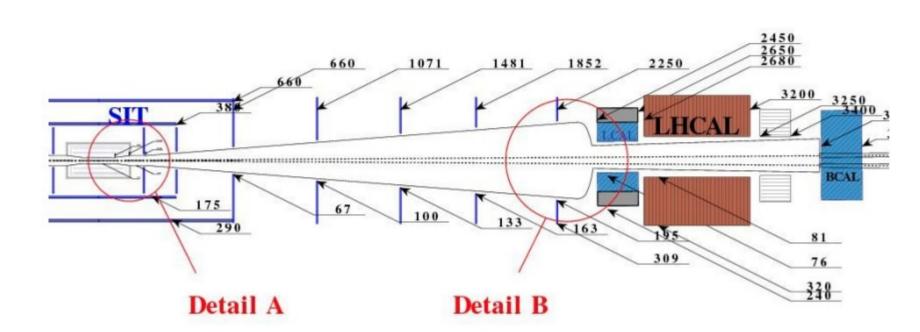
Cartoon: C. Grah 2007

Precise measurement of the integrated luminosity (ΔL/L ~ 10⁻⁴)
 Provide 2-photon veto

 Provide 2-photon veto
 Serve the beamdiagnostics using beamstrahlung pairs
 Complemented by Pair Monitor

•Serve the beamdiagnostics using beamstrahlung photons

Covered


Covered

Entirely uncovered

9

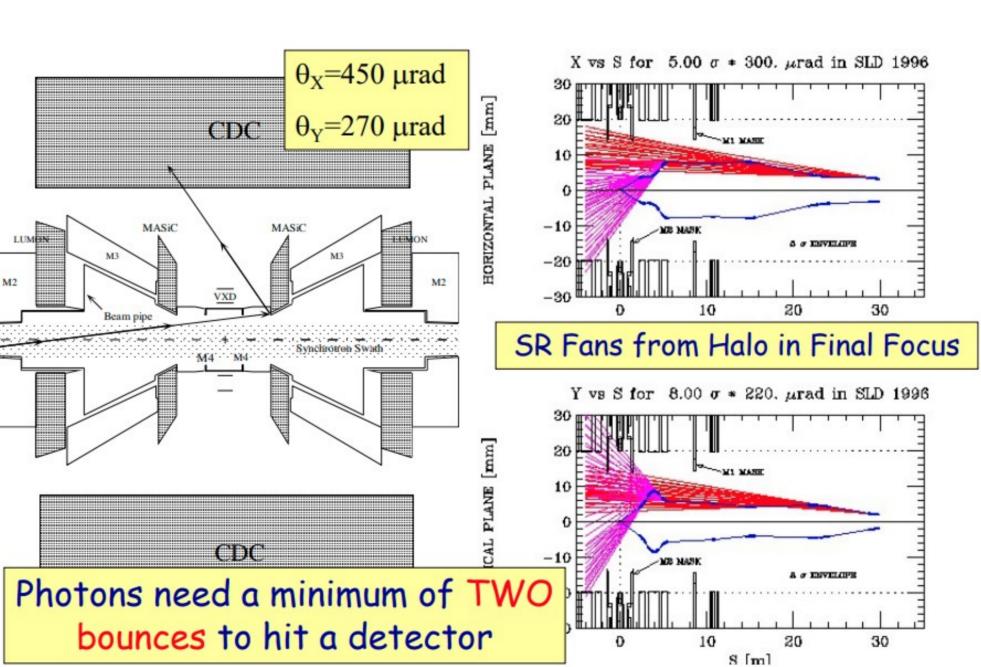
Beam pipe (of ILD)

- (Videau, Anduze, Joré):
- Total weight 4 kg
- Max displacement 30um
- Buckling safety factor 6
- - ,,, that nobody did since 2009

Beam pipe design with vacuum pump that was removed after change to L*=4.1m Dedicated (engineering) studies on consequences for vacuum in 2015

- Beam pipe cone acts as RF cavity
 - ... and can dissipate heat into material, estimation from 2009 20-24°C
- Air cooling seems to be ok but requires revision
 - Belle II or FCCee have or are imagined to have water cooled beam pipes due to synchrotron radiation
- Are there other sources of heat, should one include safety factors?
 - Note that synchrotron radiation was a problem at SLC

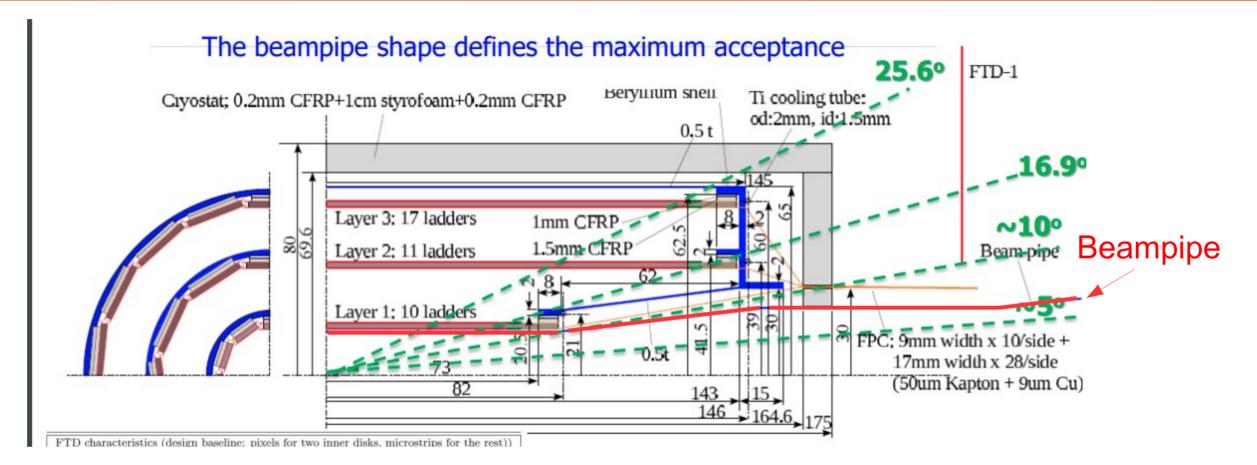
Mechanical model from 2009

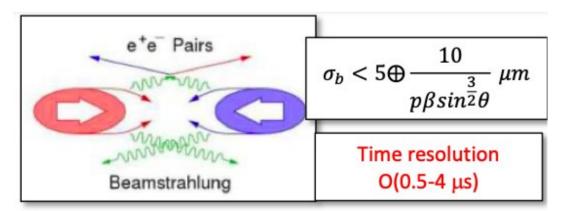

Beryllium, thickness between 0.5 and 1.5 mm Von Mises constraint 30MPa Ambitious design, requires serious R&D

Synchrotron Radiation

Synchrotron radiation photons from final focus magnetscould reach the detector

- minimum two bounces, but it happened...
- Design IR Region carefully
 - Prepared for the unexpected?
- Diagnostics are critical
- Stability is paramount
- Build your subdetector with background issues in mind
 - Don't build devices which can fail catastrophically




1 I

At SLD/SLC SR WAS THE PROBLEM T. Markiewicz

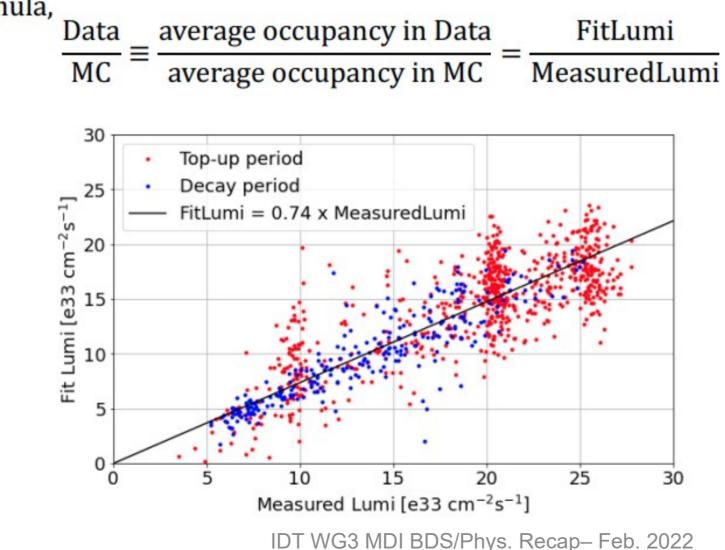
Vertex detector and forward tracking

A. Besson/M. Winter

Apologises for not having invited a dedicated forward tracking talk

- Beam related background dominates hit rate and determines layout of vertex detectors and forward tracking
- Today few percent occupancy considered as acceptable (at time resolution of 3-4us
 - During the meeting is was pointed out that modern pixel detectors can stand high background rates than assumed so far
 - => smaller inner radius of vertex detectors and forward tracking disk(s)
- What role of the vertex detectors for determination of beam parameters?
 - At first sight rather limited since slow detector but should be revisited

IDT WG3 MDI BDS/Phys. Recap-Feb. 2022



Data MC/ratio for luminosity background

- FitLumi ∝ MeasuredLumi (intercept is fixed at 0)
- Average occupancy in Data = occupancy in MC scaled to fitLumi
- Average occupancy in MC = occupancy in MC scaled to MeasuredLumi
- Using the above formula,

• Data/MC = 0.74

2022/01/06

Zihan Wang

"Real life" experience with background studies at circular machine

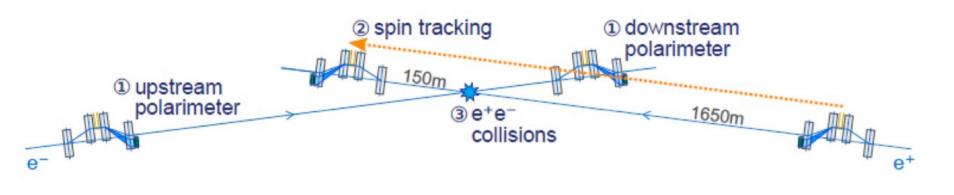
Core Program				
Observable	M _H	M _t	M _W	M _X
Method	Recoil mass	Scan	Reconstruction	Scan?
Best \sqrt{s} [GeV]	250	350	250	Highest?
Current precision [MeV]	170	300	12	-
Target precision [MeV]	10	20	2	?
\sqrt{s} contribution [MeV]	3	6	0.5	?
\sqrt{s} uncertainty goal [ppm]	100	200	10	100?

Ultimate Impact/Reach

Observable	M _W	Mz	Γ _Z	$A_{\rm LR}$
Method	Scan	Scan	Scan	Count/Scan
Best \sqrt{s} [GeV]	161	91	91	91
Current precision	12	2.1	2.3	$1.9 imes10^{-3}$
Target precision	2 MeV	0.2 MeV	0.11 MeV	$3.5 imes10^{-5}$
\sqrt{s} contribution	0.8 MeV	0.2 MeV	small	$1.8 imes10^{-5}$
\sqrt{s} uncertainty goal [ppm]	10	2	5*	10

Shopping list for MDI/BDS

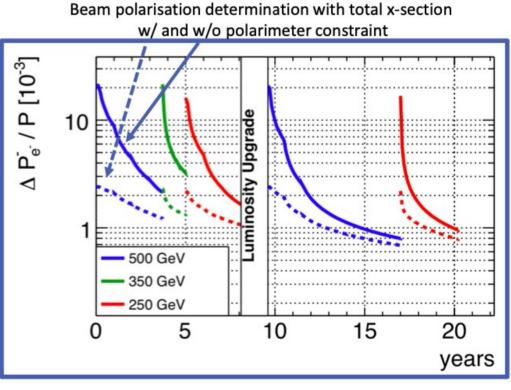
- Assess and plan for global energy/luminosity/ beam diagnostics analysis and insights
- Upgrade beam-beam studies/generatirs to
- Representative complete machine and variations
- thereof
- Assess and plan for ultimate beam-spot/luminous
- Region diagnostics including vertexing
- How we deal with E-z correlations?
 - Beamstrahlung depend on z-position in bunch
- Can we go beyond 100pm for energy spectrometers
 - series



• Energy spectrometers were one of the big absents in the meeting

Polarimetry

Elements of polarimetry at ILC



Polarisation measurement – Error budget

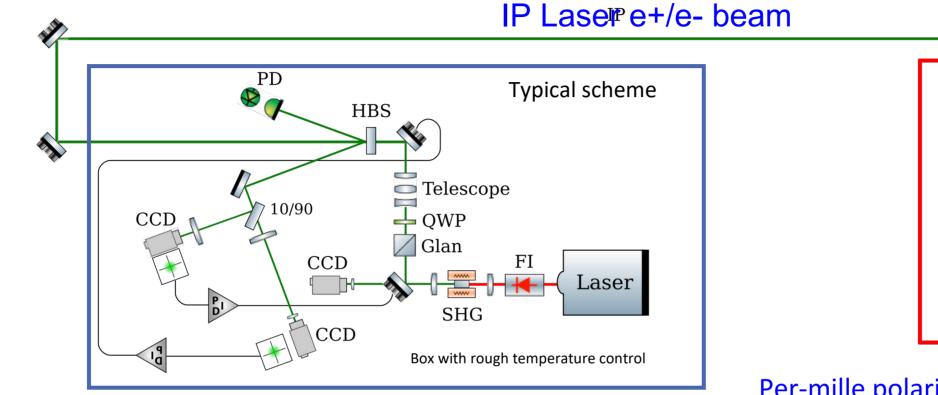
	$\delta \mathcal{P}/\mathcal{P}$		
source of uncertainty	SLC	ILC goals	
laser polarisation	0.1%	0.1%	
detector alignment	0.4%	0.15 - 0.2%	
detector linearity	0.2%	0.1%	
electronic noise and beam jitter	0.2%	0.05%	
Total	0.5%	0.25%	

Per mill polarimetry by ...

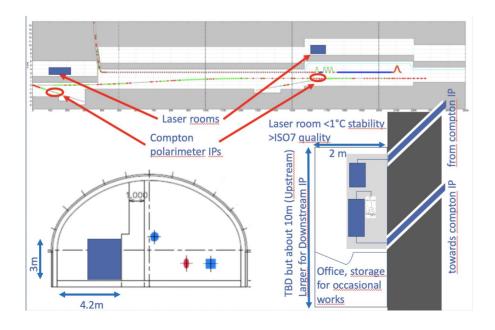
- - major challenge
- point

A. Martens

IDT WG3 MDI BDS/Ph


 Compton polarimeter measurements upstream and downstream of e+e- interaction point • Downstream polarimetry on spent beam is

• Spin tracking to relate these measurements to the polarisation and the e+e- interaction

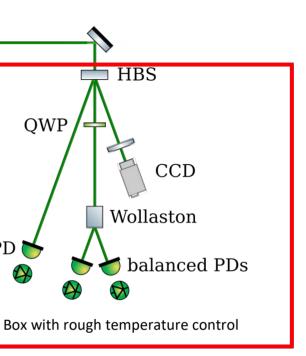

• Long term average determined from e+ecollision data as absolute scale calibration

Laser polarisation and shaping control

Modern lasers => Laser can be put in service tunnel

A. Martens

Per-mille polarization control is not easy !

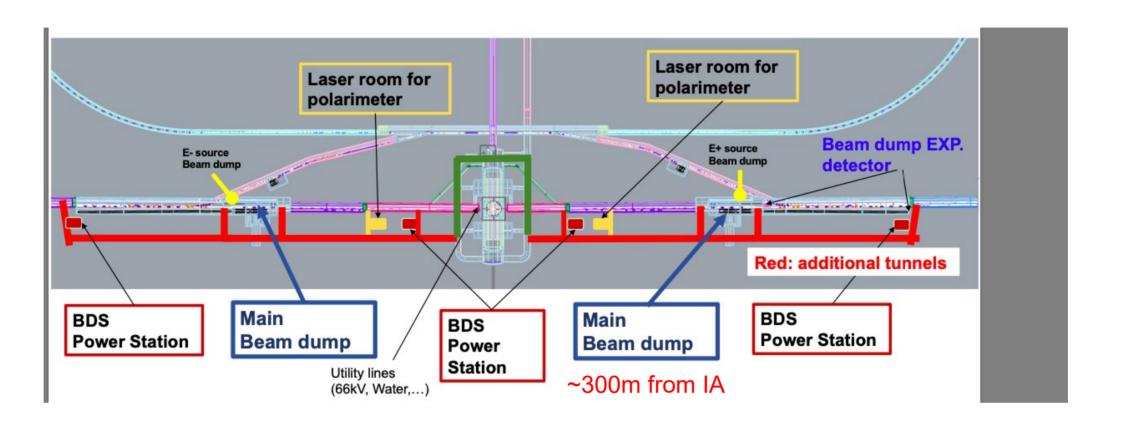

PD 🎽

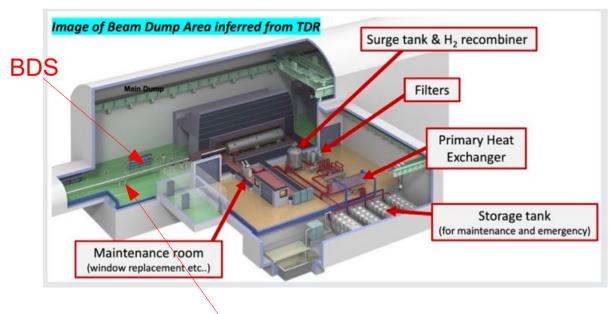
- Thickness defects
- Detailed model used succesfully at HERA

- polarimeter for SuperKEKB

• Control optical birefringence of all optical elements Mechanical stress, Temperature, Rouhgness defects,

• Internal reflections and interferences in waveplates • What about laser-induced thermal effects at tens of Watts ?


Intensive R&D on laser control at IJCLab


• ILC should/could benefit from development of

Beam dump

Nobuhiro Terunuma

• Beam dump designed for 1 TeV, layout for 17MW of beam energy

- Most important for MDI
 - Sets constraints for BDS System, 3m concrete shield between BDS and BDS
 - Would have to be taken into account in case of change of crossing angle
 - It is a source of neutron background
 - See talk by M. Stanitzki in Kick-off meetings
 - · Future studies have to follow beam dump development
 - Background studies require FLUKA which was not discussed in meeting series
 - Need expertise for ILC
- In case of beam dump experiments have to become part of MDI working group IDT WG3 MDI BDS/Phys. Recap- Feb. 2022

Beam dump beampipe

- Alignment strategy needs to take push-pull and power pulsed operation into account
- Limited possibilities for track based alignment
 - Relatively small statistics
 - Alignment with Z-Pole events requires flexibility of machine
 - New ideas: Use also soft tracks from beam strahlung or soft hadrons for alignment,
 - In this case we would have "zillions" of events
- Precise and fast reacting optical alignment systems will become of paramount importance
- The capability to align the detectors after push-pull will have an impact on the operation mode of the project
- Meeting with Armin Reichold 2/2/22
 - Alignment has to be seen as an holistic approach and requires tight interaction between
 - the machine and the detector
 - It is a specific project on its own and it's difficult to apply concepts for e.g. LHC experiments
 - LHC has much more tracks

Objective

• Seek for explicit encouragement for the continuation of MDI activities in an uncertain environment

Actions

- Short term: Coordinate with IDT Management
 - Input to IDT Management for ICFA Meeting
- Medium Term: Summary of meeting series and (lightweight) workplan

Procedure

- Core team will ensure input to IDT Management and initial drafting of summary document
- During drafting phase of summary document we will get in touch with experts
- Advanced draft of summary document will be distributed to the mailing list used for this meeting series
- Need to clarify things like authorship or simple expression of interest etc.

- Preliminary structure
 - Introduction
 - Section 1: Layout of MDI regions
 - Section 2: IP Collision feedback and collimation system
 - Section 3: Software and precision of background studies
 - Section 4: Beam polarisation, polarimetry, energy measurements
 - Section 5: Alignment and push-pull
 - Conclusions
- The sections could form the basis of a workpackage structure
 - Remark: If your favorite topic is not among the titles don't worry all topics discussed in the meeting series will be part of the document
 - Details will be worked out in the next weeks, stay tuned

- The meeting series was a rich forum of discussion on the status of MDI for the ILC
 - ... and it allowed assembling a good fraction of today's know-how at one place
 - It was also good to see that at least some talks were given by young colleagues
- It allowed already for free thinking and development of new ideas
 - If all questions and open (and uncovered) topics would translate into studies we would have "out of the box" a rich working programme
 - Need still to identify priorities and be in phase with the general development of ILC (Linear Colliders)
- Have to document the action in a way that could serve as a first input to motivate support for MDI related work
 - .. and to allow us to react quickly if miracles happen
 - May also be input to ECFA Higgs study (and Snowmass even if late)
 - We may distinguish between ongoing work, i.e. Work that will happen independently whether there is a pre-lab or not (and where ILC related studies could sail in the wake field) and work for which the existence of a pre-lab and funding is mandatory since otherwise work is entirely stalled
- The most important thing is now to "keep the band together" (and enlargen it) in a dire phase
 - Topical meetings in case of relevant developments?
 - Will inform in any case on the status of the documentation
 - An encouragement from the IDT or even ICFA management would certainly very helpful even if it's not resource loaded
 - Explore opportunities to attract and train people

