FLAME MC AGREEMENT DEBUGGING

24.11.2021

R.Bugiel, S. Bugiel. M.Idzik

Introduction

DATA:

- The 15-X0 data coverage is made merging different sets of runs (one run covers 3 X0)
- Noisy pixels are masked at FPGA level
- Signal threshold set at FPGA level
- Cluster = integrated signal from pads above threshold over whole frame
- Noise cuts:

0X0: 10 ADU	1X0: 6.4 ADU	4X0 : 6.5 ADU	7X0:9.5 ADU	10X0:10.5 ADU	X13: 9.5
	2X0:6.3 ADU	5X0:6.5 ADU	8X0:9.5 ADU	11X0: 10.5 ADU	X14: 6.5
	3X0:7.6 ADU	6X0: 9.5 ADU	9X0:8.5 ADU	12X0: 8.5 ADU	X15: 6.5

MONTE CARLO:

- The version send from Alina in November 2021
 - + request for 1GeV and 3GeV \rightarrow also got from this month
- MC postprocessing:
 - GAIN : MC_signal = : MC_signal * FE_gain (=140)
 - NOISE : MC_signal = : MC_signal +gRandom \rightarrow Gaus(0, FE_sigma_noise (=1))
 - DISCRIMINATOR THRESHOLD: if(MC_signal < FE_threshold (= 10)) MC_signal = 0
 - DIGITIZATION: not done

Normalization:

- To the number of events
 - MC : 10k /100k (5GeV only)
 - DATA : depending on run the different normalization constant is used six different constants in general (plane 0, plane 1-3, plane 4-6, plane 7-9, plane 10-12, plane 13-15)

MC vs DATA – HIT MAP 3D

- FLAME has on-chip data processing (signal above threshold saved only)
- Low-signal noise cut in data analysis also too high?

Some boundary entries in non-illuminated pads for MC \rightarrow should be removed, but also should not influence strongly results

CLUSTER SIZE (number of pad with signal in frame) – per plane – DATA / MC

Cluster size after 3X0

0.25

0.2

h cluster size[3] tries 322464 3.238 1.993

CLUSTER SIZE (number of pad with signal in frame) – per plane – DATA / MC

cluster size

For DATA we see smaller average cluster size than MC

- → This might be caused by high noise cut
- \rightarrow Should be investigated more

CLUSTER ENERGY (= total frame energy) per plane DATA / MC

ISSUE: disagreement between DATA and MC starting from 2X0

CLUSTER ENERGY (= total frame energy) per plane DATA 5GeV / MC 5 GeV / MC 3 GeV / MC 1 GeV

CLUSTER ENERGY – 2X0 zoom/log -- DATA 5GeV / MC 5 GeV / MC 3 GeV / MC 1 GeV

PAD ENERGY - per plane DATA 5GeV / MC 5 GeV / MC 3 GeV / MC 1 GeV

0.08F

0.07

0.06

0.05

0.04

0.03E

0.02

0.01

For DATA \rightarrow we are missing lowenergetic entries (also seen on cluster size) \rightarrow can be still connected with noise cuts

180 200 pad energy

nad energy

h_pad_energy[14]

996950

49.62

37.11

Entries

Std Dev

160

Mean

Pad energy per plane 2

20

0.14

0.12

0.1E

0.08

0.06

0.04

0.02

상

0.2

0.15

0.1

0.05

0

0.2

0.18

0.16E

0.14

0.12

0.1

0.08

0.06

0.04

0.02

20 40

20 40

20 40 30

60 80

60

60

40

Pad energy per plane 6

Pad energy per plane 10

Pad energy per plane 14

80 100 120 140

50

60

Entries

Std Dev

Mean

100 120 140 160

70

nad energy

h_pad_energy[6]

1812842

180 200

71.16

47.19

h_pad_energy[2]

854785

35.44

19.47

Entries

Std Dev

Mean

PAD = (channel)

SEED – pad with the highest energy (=100 ADU)

CLUSTER – all pads with signal for particular frame

CLUSTER SIZE = number of pads with signal in frame (= 3 pads)

CLUSTER ENERGY = integrated energy over the frame (=180 ADU)

SEED SPECTRUM

SEED ENERGY RATIO \rightarrow

seed energy / cluster energy [%]
100 / 180 = 55 % (seed pixel is carrying 55% of the whole cluster energy)

if cluster size = 1 (only one pad with signal) \rightarrow 100%

SEED PAD ENERGY (highest energetic pad) - per plane DATA 5GeV / MC 5 GeV / MC 3 GeV / MC 1 GeV

- Qualitatively seed energy spectrum very similar to cluster energy
- Disagreement DATA/MC shows up even on this level = before clustering
- Still on 2X0 good match to 1GeV → but not deeper in the stack

SEED ENERGY RATIO (highest energetic pad / whole cluster energy) - per plane DATA 5GeV / MC 5 GeV

10

Percentage of ener 0 on plane: 14

- Above 3X0 seed pad is carrying more energy of the whole cluster for DATA than MC
- DATA has more 1-pad clusters \rightarrow noise
 - contributions?

CLUSTER SIZE - per plane DATA 5GeV / MC 5 GeV / MC 3 GeV / MC 1 GeV

BACKUP

- 2D MAP of pad (with signal) position [in pad] DATA number of hits in pad per plane [integrated over the whole run] page 15
- 2D MAP of pad (with signal) position [in pad] MC number of hits in pad per plane [integrated over the whole run] page 16
- 2D MAP of cluster position [in um] DATA per plane [integrated over the whole run] page 17
- 2D MAP of cluster position [in um] MC per plane [integrated over the whole run] page 18
- 2D MAP of integrated energy [in pad] DATA page 19
- **2D MAP of integrated energy** [in pad] MC page 20
- Shower profile after alignment for DATA page 21
- Number of full events & frames to be verified, especially for MC page 22
- Empty events & frames to be verified, especially for MC page 23
- Mean cluster size mean cluster size (=number of pads with signal per frame per plane averaged over whole run) page 24
- Mean energy (cluster energy on plane averaged over the whole run) page 25 to be updated
- Integrated pad energy for 1/2/3/4/5 GeV for DATA available only for 4X0, 5X0 and 6X0 page 26
- Integrated cluster energy for 1/2/3/4/5 GeV for DATA available only for 4X0, 5X0 and 6X0 page 27
- Pad energy spectrum comparison between MC and DATA for 1, 3 and 5 GeV available only for 4X0, 5X0 and 6X0 page 28
- Cluster energy spectrum comparison between MC and DATA for 1, 3 and 5 GeV available only for 4X0, 5X0 and 6X0 page 29
- Ratio of the second energetic pad in the cluster to the whole cluster energy page 30
- Spectrum of the second energetic pad in the cluster page 31
- Ratio of the third energetic pad in the cluster to the whole cluster energy page 32
- Spectrum of the third energetic pad in the cluster page 33
- Correlation between cluster size on 1X0 and 2X0 and 2X0 and 3X0 page 34

DATA – hits position [pad]

MC – hits position [pad]

The position of hit [pad] 12

_h2_pad_hit_position[12]

The position of hit [pad] 13

_h2_pad_hit_position[13]

x [ped] x

x [pad]

The position of hit [pad] 14

The position of hit [pad] 15

16

DATA- cluster position [um]

x jumį

x jumj

x (um)

x jumi

x jumį

x (um)

x jumi

MC – cluster position [um]

0 05 1 15 2 25 3 35 4

x (um)

0 05 1 15 2 25 3 35 4

x (um)

0 05 1 15 2 25 3 35 4

x |um|

0 05 1 15 2 25 3 35 4

x jumį

0 05 1 15 2 25 3 35 4

x jumį

0 05 1 15 2 25 3 35 4

x |um|

0 05 1 15 2 25 3 35 4

x jumį

0 05 1 15 2 25 3 35 4

x jumį

DATA - integrated pad energy (no clustering)

Integrated pad ene at X0 = 7

integrated pass evel?

Entries

Moan v

1785305

0.5291

25.79

юал к

loan y

Std Dev x

Std Dev y

0 05 1 15 2 25 3 35 4

0.531

24.39

0.499

3.844

Compared_pass_engint_ 1878843 0.4248 loan ĸ 25.17 lloan v Std Dev x 0.4943 Std Dev y 3.472

Integrated pad ene at X0 - 11

Integrated pad ene at X0 - 12 N_integrated_pass_ete(12) Entries Moan x Mean v Std Dev x Std Dev y

ж

0 05 1 15 2 25 3 35 4

Integrated pad ene at X0 - 13 2 misenated parts anal13 1127495

×

0.4504

24.67

0.4975

3.879

Integrated pad ene at X0 - 14 h2 integrated pets ane[14] 996950

Integrated pad ene at X0 = 15

0 05 1 15 2 25 3 35 4

Integrated pad ene at X0 - 10

_niegrated_pads_ene(10

1994336

0.5088

25.5

0.4999

3.623

50

atrias

оал к

ioan y

Std Dev x

Std Dev y

MC - integrated pad energy (no clustering)

MC vs DATA – shower profile

DATA

Shower profile

MC

Shower profile

50 Iransverse [pags] verse_deposition_prol-li Entries 9.124063e+0 7.595 loan i 40 0.4499 loan y 3.157 Std Dev x 2.793 Std Dev y 10 30 20 10 0 -10 -20 -30 10⁻¹ -40 -50<u>---</u>0 2 6 8 10 12 14 16 4 Longitudinal [X0]

FRACTION OF ALL FULL FRAMES

DATA

MC

FRACTION OF EMPTY FRAMES

DATA

MC

DATA

MC

Mean cluster size

Mean energy

PAD ENERGY – 1GeV /2 / 3/ 4 / 5 -- DATA

PAD ENERGY - DIFFERENT ENERGIES DATA (blue tone) vs MC (red tone)

CLUSTER ENERGY - DIFFERENT ENERGIES DATA vs MC

THE SECOND HIGHIEST ENERGY PAD / TOTAL CLUSTER ENERGY

ENERGY SPECTRUM OF THE SECOND HIGHIEST ENERGY PAD

THE THIRD HIGHIEST ENERGY PAD (seed) / TOTAL CLUSTER ENERGY

THE THIRD HIGHIEST ENERGY PAD SPECTRUM

Energy in pad 2 on plane: 3

0.008

0.006

0.004

0.002

h onergy in pad[3][2] Entries 183487 Mean 59.85 Std Dev 37.21

33

CS correlation

DATA

34