Time Resolution Measurements with the SiPM-on-Tile Technology

Test Beam 2021 - DESY

AHCAL Main Meeting - DESY 2021

MAX-PLANCK-IN FÜR PHYSIK

Lorenz Emberger, Fabian Hummer, Frank Simon

Single channel resolution: $1.1/\sqrt{2} = 0.78$ ns

Key conclusion from 2020:

- AHCAL front-end contributes ~0.6ns
- Scintillator contributes ~0.505ns

Lorenz Emberger

MAX-PLANCK-INS

Key conclusion from 2020:

- AHCAL front-end contributes ~0.6ns
- Scintillator contributes ~0.505ns

Lorenz Emberger

Time resolution is determined by scintillator and tile properties

Motivation for the Test Beam 2021

Observations from the 2020 TB:

Extend this data set to more sizes and materials

AHCAL Main Meeting 2021

Lorenz Emberger

Motivation for the Test Beam 2021

MAX-PLANCE

Lorenz Emberger

Motivation for the Test Beam 2021

	e	25	5	
	>	<		

Test Beam Program

Studied scintillator types

Properties	BC404	BC408	BC418	BC422Q
Light Output, %Anthracene	68	64	67	19
Rise Time	0.7ns	0.9ns	0.5ns	0.11ns
Decay Time	1.8ns	2.1ns	1.4ns	0.7ns
Pulse Width FWHM	2.2ns	2.5ns	1.2ns	0.36ns
Wavelength	408nm	425nm	391nm	370nm

Tile areas: 20x20mm², 30x30mm², 40x40mm²

Goal: Investigate influence of scintillator and tile properties on timing

MAX-PLANCK-INS

From crystals.samt-gobam.com

Stack of up to 8 Tiles:

- Various Scintillators and sizes
- Hamamatsu S13360-1325PE

Ethernet Cat 7

Receiver Box:

- USB controlled power supply
- Split signal and power lines

BNC

Picoscope:

- Up to 5 GHz sampling rate on 2 channels
- 300kHz peak trigger rate
- Save complete analog waveform

MAX-PLA

Stack of up to 8 Tiles:

- Various Scintillators and sizes
- Hamamatsu S13360-1325PE

Ethernet Cat 7

Receiver Box:

- USB controlled power supply
- Split signal and power lines

BNC

Picoscope:

- Up to 5 GHz sampling rate on 2 channels
- 300kHz peak trigger rate
- Save complete analog waveform

MAX-PLA

Data Taking

Effective data rate: ~5kHz

	BC404	BC408	BC418	BC422Q
20>	x20	4.9 E7 er)	4.7 E7	<u>5mm:</u> 9.4 E7 (ESR) <mark>8.4 E6 (teflon)</mark> <u>3mm:</u> 1.87 E7 (ESR)
30>	4.5 E7 9.0 E7 (absorber	7.1 E7 5.3 E7 (absorbe 8.9 E7 (old tiles) 5.1 E7 (teflon)	9.6 E7 8.0 E6 (absorbe	er) 5 <u>50m:</u> 3.7 E7 (absorber) 5.2 E7 (ESR)
40>	4.8 E7	6.4 E7	7.2 E7	<u>3mm:</u> 2.6 E7 (absorber) 1.8 E7 (ESR+teflon) 3.8 E7 (ESR)
Normal run		Abso	orber run	oifferent reflective wrapping

AHCAL Main Meeting 2021

8

Large Collimator

Ch C LY ≈ 19.96, Ch E LY ≈ 19.35, Counts Signal Integral (mVns)

Double particles:

- may impact timing by broadening the waveform if out of time
- also noticeable in 2020 data, no negative impact observed

AHCAL Main Meeting 2021

C

Charge measurement gets "delayed"

MIP time resolution

	BC404	BC408	BC418
Rise Time	0.7ns	0.9ns	0.5ns
Wavelength	408nm	425nm	391nm

Peak PDE of SiPM: ~450nm

MIP time resolution

Lorenz Emberger

		BC404	BC408	BC418
	Rise Time	0.7ns	0.9ns	0.5ns
	Wavelength	408nm	425nm	391nm
Peak PDE of SiPM: ~450nm				n

MIP time resolution

Lorenz Emberger

MAX-PLANC

	BC404	BC408	BC418
Rise Time	0.7ns	0.9ns	0.5ns
Wavelength	408nm	425nm	391nm

Peak PDE of SiPM: ~450nm

W.r.t. BC408, rise time of BC418 outweighs the wavelength mismatch

Energy Resolved Time Resolution

N.B: AHCAL scintillator is slightly worse than BC408

BE

AHCAL Main Meeting 2021

Tile Size Dependence

Tile Size Dependence

Tile Size Dependence

C

- In the AHCAL: Front-end and scintillator have a comparable impact on timing
- Test Beam Setup: Timing is almost entirely determined by scintillator
- → Suited for detailed investigation of the scintillators and tiles
- Successful second TB at DESY in October 2021:
- O(10⁷) recorded events per (size, material) combination
- Investigation of scintillator properties (e.g. light yield/PDE vs. rise time)
- Energy resolved time resolution for all studied scenarios
- Ongoing: disentangle contribution of PDE, tile dimension, rise time, ...

Backup

MIP Time Resolution - AHCAL Scintillator

66

MIP Time Resolution - AHCAL Scintillator

Lorenz Emberger

MAX-PLANCK-INS

Time resolution=0.714/sqrt(2)=0.505ns

Interpret as intrinsic time resolution of SiPM-on-Tile

Compared to 0.780ns of the AHCAL:

AHCAL front-end contributes ~0.6ns

	AHCAL Scintillator	BC408	BC408
	30x30x3mm ³	30x30x3mm ³	20x20x3mm ³
MIP Time Resolution	0.505 ns	0.490 ns	0.371 ns

Next Studies:

- Energy binned time resolution (this talk)
- Simulation of the experiment (next talk by Fabian Hummer)
- Investigation of hardware time resolution (next talk by Fabian Hummer)
- Participation in upcoming test beam at DESY

Lorenz Emberger

MAX-PLAN

- Hit time distribution of indiv. channel has tail to the right
- Two (or more?) possible reasons:
- 1. Timewalk

- Higher amplitude -> faster rise time:
- Tail contains low energy events
- But: Tail also present after time walk correction

Lorenz Emberger

- Hit time distribution of indiv. channel has tail to the right
- Two (or more?) possible reasons:
- 1. Timewalk
- 2. Photon emission and counting
 - Different times of threshold crossing of signals of the <u>same amplitude</u> due to:
 - asymmetric emission time distribution of the scintillator
 - detector noise
 - poisson counting

Binning of time walk corrected dataset:

- 0.2 MIP bins from 0.5 MIP to 5.1 MIP hit energy
- 0.4 MIP bins from 5.1 MIP to 7.5 MIP hit energy
- 1 MIP bins from 7.5 MIP to 15.5 MIP hit energy (mainly from absorber runs)

Signal times obtained with fixed amplitude threshold (25 mV = \sim 3 pe) to :

- Disentangle effects from time walk and scintillator/photon counting
- Investigate different thresholds

- Only accept events with both hits within the same energy bin (only 10% of events)
- Trigger time obtained with constant fraction discrimination (elim. time walk in trigger)

Lorenz Emberger

MAX-PLANC

Distributions get narrow and approach a gaussian:

 Study evolution of skew with energy

Studied Scenarios:

- AHCAL Scintillator 30 x 30 x 3 mm³
- BC408 30 x 30 x 3 mm³ and 20 x 20 x 3 mm³

AHCAL:14.3 pe/MIP BC408: 22.87 pe/MIP 20 x 20mm2 BC408: 21.85 pe/MIP

AHCAL Main Meeting 2021

Modifications to the setup:

- Improved mechanical stability
- Cooling plates for gain stability
- External trigger generation to enable 200ps sampling

Testbeam in October 2020 at DESY was successful:

- Test of SiPM-on-Tile technology with AHCAL scintillator and BC408
- Investigation of MIP time resolution \bullet
- Energy binned time resolution up to 15 MIP thanks to 10⁸ recorded events

Upcoming testbed in October 2021 at DESY:

- Test scintillators with different timing properties
- Modifications to the setup for better stability, increased sampling resolution, ...

Data Taking and Processing

Lorenz Emberger

AHCAL Main Meeting 2021

Kara
s-analysis
s C and width σ
362511 values 082 ± 0.0032 7256± 0.0032 7 ² = 9.6644E 05
4 4
e channels
7

Comparison of PE Calibration

ChannelC: AHCAL: 65.370mVns = 1PE BC408: 65.680mVns = 1PE BC408small: 71.930mVns = 1PE

ChannelE: AHCAL: 63.656mVns = 1PE BC408: 63.534mVns = 1PE BC408small: 70.717mVns = 1PE

Lorenz Emberger

AHCAL Main Meeting 2021

AHCAL Dataset - Time Walk

MAX-PLANC

Time walk correction reduces width of distribution, but tail remains

Lorenz Emberger

