PandoraPFA Studies with 2018 Prototype Beam Test Data & ILD Jet Simulations

Daniel Heuchel (DESY) daniel.heuchel@desy.de AHCAL Marzipan @ DESY 8th December 2021

AHCAL Beam Test Data

- Brief Reminder: Concept of Particle Flow and Confusion Types
- Two Particle Separation Studies
- Performance Studies with Different Particle Flow
 - ➡ Algorithm Settings
 - ➡ Energy Thresholds
- Summary & Conclusions

The Particle Flow Approach

Particle Flow Approach

Key to Highest Precision

- Baseline goal: Jet energy resolution of 3-4% for jet energies of 40-500 GeV
 - Conventional calorimetry limited by intrinsic energy resolution of HCAL (~60%/ \sqrt{E})
 - ➡ PFA: Measure energy/momentum of individual particles with sub-detector providing best resolution
 - ➡ Make use of excellent resolution of tracker (for ~60% charged particles in jets)

Particle Flow Approach

Key to Highest Precision

- Baseline goal: Jet energy resolution of 3-4% for jet energies of 40-500 GeV
 - Conventional calorimetry limited by intrinsic energy resolution of HCAL (~60%/ \sqrt{E})
 - ➡ PFA: Measure energy/momentum of individual particles with sub-detector providing best resolution
 - ➡ Make use of excellent resolution of tracker (for ~60% charged particles in jets)

Confusion Types

Limits of Particle Flow Reconstruction

Well Reconstructed Example Event

J. S. Marshall: <u>https://indico.in2p3.fr/event/7691/contributions/42712/</u> attachments/34375/42344/3_john_marshall_PFA_marshall_24.04.13.pdf

Confusion Types

Limits of Particle Flow Reconstruction

Well Reconstructed Example Event

J. S. Marshall: <u>https://indico.in2p3.fr/event/7691/contributions/42712/</u> attachments/34375/42344/3_john_marshall_PFA_marshall_24.04.13.pdf

- Topologically/energetically confusing events potentially cause problems for PFA reconstruction:
 - Two types of confusion
 - Level and balance of this "mistakes" limiting jet energy resolution at high energies

DESY. | PandoraPFA Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | AHCAL Marzipan Meeting | 8th December 2021 |

PandoraPFA Applied on AHCAL 2018 Beam Test Data & MC

Magenta: Charged Hadron Hits Cyan: Neutral Hadron Hits Grey: Unclustered Hits

Motivation and Goals of Studies I

PandoraPFA on AHCAL 2018 Prototype Data

- **General question:** How accurate are details of simulations (e.g. ILD jets) to fully exploit shower substructure information for an improvement in energy resolution? Is this dependency predictable?
 - Study limiting effects of PFA in detail for different energies and shower distances
 - Provide performance feedback on real data in comparison to simulations
 - ➡ Apply PandoraPFA on a simplified setup (AHCAL 2018 data + tracks)
 - Evaluated simulated algorithm performance for standalone application
 https://agenda.linearcollider.org/event/8608/contributions/46465/attachments/35889/55718/DH_pandora_calice_200930_final.pdf

Motivation and Goals of Studies I

PandoraPFA on AHCAL 2018 Prototype Data

- **General question:** How accurate are details of simulations (e.g. ILD jets) to fully exploit shower substructure information for an improvement in energy resolution? Is this dependency predictable?
 - Study limiting effects of PFA in detail for different energies and shower distances
 - Provide performance feedback on real data in comparison to simulations
 - ➡ Apply PandoraPFA on a simplified setup (AHCAL 2018 data + tracks)
 - Evaluated simulated algorithm performance for standalone application
 https://agenda.linearcollider.org/event/8608/contributions/46465/attachments/35889/55718/DH_pandora_calice_200930_final.pdf

Questions to be Answered: How well can PandoraPFA separate and resolve the neutral and the charged hadron? How is confusion level scaling with energy & distance? How balanced are energy losses & double counting?

- Simulation agreeing well with beam test data?

Motivation and Goals of Studies II

PandoraPFA on AHCAL 2018 Prototype Data

First comparable studies: Former AHCAL prototype (<u>https://arxiv.org/abs/1105.3417</u>) and SDHCAL with ArborPFA (<u>http://cds.cern.ch/record/2669487/files/</u><u>fulltext.pdf</u>)

Why do it again on AHCAL 2018 prototype data?

- Significant developments in PandoraPFA
 - Modular drivers and applications (standalone AHCAL instead of projection of data to ILD)
 - ➡ Interface for changes/adaptions/plugins, etc.
- AHCAL 2018 prototype:
 - ➡ Significant reduction of noise (SiPMs)
 - Very high and uniform granularity (22k channels)
 - Timing capabilities for potential use
- Single particle studies new (presented previously)

J. S. Marshall: https://indico.in2p3.fr/event/7691/contributions/42712/ attachments/34375/42344/3_john_marshall_PFA_marshall_24.04.13.pdf

Still state of the art for PFA!

DESY. | PandoraPFA Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | AHCAL Marzipan Meeting | 8th December 2021 |

Motivation and Goals of Studies II

PandoraPFA on AHCAL 2018 Prototype Data

First comparable studies: Former AHCAL prototype (<u>https://arxiv.org/abs/1105.3417</u>) and SDHCAL with ArborPFA (<u>http://cds.cern.ch/record/2669487/files/</u><u>fulltext.pdf</u>)

Why do it again on AHCAL 2018 prototype data?

- Significant developments in PandoraPFA
 - Modular drivers and applications (standalone AHCAL instead of projection of data to ILD)
 - ➡ Interface for changes/adaptions/plugins, etc.
- AHCAL 2018 prototype:
 - ➡ Significant reduction of noise (SiPMs)
 - Very high and uniform granularity (22k channels)
 - Timing capabilities for potential use
- Single particle studies new (presented previously)

AHCAL 2018 Prototype: 38 layers within steel stack

DESY. | PandoraPFA Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | AHCAL Marzipan Meeting | 8th December 2021 |

Intermezzo: Generation of Pseudo Neutral Hadrons & Event Overlay

Finding and Removing Primary Ionising Track

Generation of Pseudo Neutral Hadrons

- Conditions for hit to be removed:
 - ➡ Hit located in layer < shower start layer</p>
 - Hit position within r = 60mm to cogX/Y of shower (central shower axis)
 - ➡ Hit energy < 3 MIP
- Method robust and working well:
 - # cut hits (primary track) well correlated with shower start layer

Shower Start Layer AHCAL vs. NHits Cut

Validation of Pseudo Neutral Hadrons

Comparison of Real & Pseudo Neutral Hadrons 20 GeV (MC)

- In general good agreement between real neutrals (K0L) and pseudo neutrals (cut π^{-})
- ➡ Pseudo-neutrals validated for charged-neutral separation studies (response and topology)

Note: "Generation of Artificial Neutral Hadron Showers in A Highly Granular Calorimeter using Cycle-Consistent Neutral Networks" proposed paper by J. Rolph, E. Garutti and G. Kasieczka

Event Overlay

Generation of Two Particle Events (Pseudo-Neutral + Charged Hadron)

- Channel by channel overlay of hit information to create desired two particle events: ٠
 - Origin flagging of hits: Which hit was neutral/charged/mixed
 - Energy threshold considerations Overlaid hits exceeding energy threshold?
 - Randomised
 - Control parameters: Energy of charged hadron, radial shower distance

PandoraPFA Two Particle Separation - AHCAL 2018 Data & MC

- Boosted-Decision-Tree PID for hadrons (to remove beam contamination)
- Event: 10 GeV pseudo-neutral + 10 GeV or 30 GeV charged hadron
- Radial shower distance: **0-300 mm**
 - ➡ Track for charged hadron: Fixed sharp momentum of 10 GeV or 30 GeV
 - ➡ Data: Delay wire chambers at beam test; MC: MCTruth information

PandoraPFA Two Particle Separation - AHCAL 2018 Data & MC

- Boosted-Decision-Tree PID for hadrons (to remove beam contamination)
- Event: 10 GeV pseudo-neutral + 10 GeV or 30 GeV charged hadron
- Radial shower distance: **0-300 mm**
 - Track for charged hadron: Fixed sharp momentum of 10 GeV or 30 GeV
 - ➡ Data: Delay wire chambers at beam test; MC: MCTruth information
- Additional event selection (since no ECAL in front of AHCAL):
 - ➡ Track-hit match layer 1||2||3, track-detector-gap rejection
 - ➡ At least 10% of charged hadron energy associated to track
- PandoraPFA: ILD default settings with PFA recalibration, adaptions of algorithms and interface processor due to AHCAL geometry & standalone application

Data: June 2018 + DWC MC: GEANT4 v.10.03 QGSP_BERT_HP & FTFP_BERT_HP physics lists

DESY. | PandoraPFA Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | AHCAL Marzipan Meeting | 8th December 2021 |

PandoraPFA Two Particle Separation - AHCAL 2018 Data & MC

- Boosted-Decision-Tree PID for hadrons (to remove beam contamination)
- Event: 10 GeV pseudo-neutral + 10 GeV or 30 GeV charged hadron
- Radial shower distance: 0-300 mm
 - ➡ Track for charged hadron: Fixed sharp momentum of 10 GeV or 30 GeV
 - → Data: Delay wire chambers at beam test; MC: MCTruth information
- Additional event selection (since no ECAL in front of AHCAL):
 - ➡ Track-hit match layer 1||2||3, track-detector-gap rejection
 - ➡ At least 10% of charged hadron energy associated to track
- PandoraPFA: ILD default settings with PFA recalibration, adaptions of algorithms and interface processor due to AHCAL geometry & standalone application

30 GeV

How well is the (Pseudo-)Neutral Hadron Energy Recovered?

3 Sigma Neutral Hadron Energy Recovery Probability

Example Event: 300mm Separation

Magenta: Charged Hadron Hits Cyan: Neutral Hadron Hits Grey: Unclustered Hits Example Spectrum: PFO - Calorimeter Energy 10 GeV Neutral Hadron, 300mm to Charged Hadron

How well is the (Pseudo-)Neutral Hadron Energy Recovered?

3 Sigma Neutral Hadron Energy Recovery Probability

Example Event: 300mm Separation

Magenta: Charged Hadron Hits Cyan: Neutral Hadron Hits Grey: Unclustered Hits Example Spectrum: PFO - Calorimeter Energy 10 GeV Neutral Hadron, 300mm to Charged Hadron

Overall very good data to MC agreement

How well is the (Pseudo-)Neutral Hadron Energy Recovered?

Example Spectrum: PFO - Calorimeter Energy 10 GeV Neutral Hadron, 300mm to Charged Hadron

3 Sigma Neutral Hadron Energy Recovery Probability

Recovery Probability within 3 Sigma Neutral Hadron

- Large separation: Neutral hadron recovered well
- Smaller separation: Falling recovery probability
 - More pronounced for 30 GeV charged hadron ("more hungry for 10 GeV neutral hadron hits")

DESY. | PandoraPFA Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | AHCAL Marzipan Meeting | 8th December 2021 |

How is the Total Confusion Level Scaling with Shower Distance?

Mean Fraction of Confusion Energy in Events

Mean Relative Confusion Energy Full Event

- For large shower distances: Mean fraction of confused energy < 10%
- With decreasing shower distance: Mean fraction of confused energy is increasing
- How are the individual types of confusion scaling with shower distance?

A Closer Look Into Confusion Types - Confusion Matrix

Example: Data, 10 GeV Pseudo Neutral + 30 GeV Charged Hadron

- Exploiting hit information: Check if hit energy was correctly/in-correctly reconstructed as charged/neutral
 - Access to confusion matrices
 - Disentanglement of lost neutral and double counted charged energy
- Expected trends verified for decreasing shower distance:
 - ➡ Both confusion types increasing
 - In-balance of energy losses and double counted energy increasing

A Closer Look Into Confusion Types - Confusion Matrix

Example: Data, 10 GeV Pseudo Neutral + 30 GeV Charged Hadron

- Exploiting hit information: Check if hit energy was correctly/in-correctly reconstructed as charged/neutral
 - Access to confusion matrices
 - Disentanglement of lost neutral and double counted charged energy
- Expected trends verified for decreasing shower distance:
 - ➡ Both confusion types increasing
 - In-balance of energy losses and double counted energy increasing

A Closer Look Into Confusion Types - Confusion Matrix

Example: Data, 10 GeV Pseudo Neutral + 30 GeV Charged Hadron

- Exploiting hit information: Check if hit energy was correctly/in-correctly reconstructed as charged/neutral
 - Access to confusion matrices
 - Disentanglement of lost neutral and double counted charged energy
- Expected trends verified for decreasing shower distance:
 - ➡ Both confusion types increasing
 - In-balance of energy losses and double counted energy increasing

Performance Studies Different PandoraPFA Settings AHCAL 2018 Data & ILD Jets

Studies of Different PandoraPFA Settings

Motivation & Goals

- Which algorithms within PandoraPFA are most sensitive to level of confusion & specific types?
 - Gain deeper understanding of PandoraPFA's "magic" and algorithm interplay
 - Compare impact and trends for more complex and dense ILD di-jet simulations and AHCAL beam test data two particle events
- Changes in PFA settings studied:
 - Re-clustering Algorithms disabled
 - Fragment Removal Algorithms disabled
 - Re-clustering Algorithms' Chi Thresholds = 1.5 (Stricter re-clustering towards Energy Flow)

J. S. Marshall: https://indico.in2p3.fr/event/7691/contributions/42712/ attachments/34375/42344/3_john_marshall_PFA_marshall_24.04.13.pdf

ILD Di-Jets

Big thanks to iLCsoft and ILD analysis experts @ FTX

Used Input Samples

Example: 200 GeV Di-jet

Example: 500 GeV Di-jet

- Jet energy resolution calibration samples for ILD (ILD_I5_o1_v02, GEANT4 v10.03.p02, QGSP_BERT)
 - ➡ Di-jet, back to back, light quarks: uds, energies: 40, 91, 200, 350, 500 GeV
- No backgrounds

How well are Lost & Double Counted Energy Balanced?

Different PandoraPFA Settings - ILD Di-Jets Simulation & AHCAL 2018 Data

Mean Absolute Confusion Difference: Double Counted - Lost Energy vs. Di-Jet Energy

- Confusion types balanced well for default settings
- Excess of lost neutral energy for no re-clustering algorithms setting
- Excess of double counted charged energy for no fragment removal algorithms & chi=1.5 settings
- Verified expected trends for confusion types

➡ Same trends for different PandoraPFA settings in AHCAL beam test data?

How well are Lost & Double Counted Energy Balanced?

Different PandoraPFA Settings - ILD Di-Jets Simulation & AHCAL 2018 Data

Yes, same trends

- but fragment removal algorithms have less impact due to smaller particle multiplicity/density
- Shower separation helps to balance confusion types, but more difficult for higher energies

DESY. | PandoraPFA Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | AHCAL Marzipan Meeting | 8th December 2021 |

Total Reconstruction Performance for ILD Di-Jets?

Different Pandora PFA Settings - Jet Energy Resolution - Closing the Circle

Jet Energy Resolution $lcos(\Theta)l < 0.7$ Pandora Settings

- Validation: Default Pandora settings optimised to 3-4%, no influence for chi thresholds = 1.5
- No Fragment Removal Algorithms: Constant decrease of ~0.6%
- No Re-clustering Algorithms: Decrease at higher energies of up to ~2.5%

DESY. | PandoraPFA Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | AHCAL Marzipan Meeting | 8th December 2021 |

Performance Studies PandoraPFA Energy Thresholds AHCAL 2018 Data & ILD Jets

Threshold: 0.5 MIP

Threshold: 3.0 MIP

Variation of Internal Energy Thresholds

Introduction & Motivation

Is a highly granular calorimeter in a high radiation environment capable of achieving sufficiently high PFA performance over its full life time?

0.5 MIP

1.0 MIP

3.0 MIP

- Study PandoraPFA performance with increasing internal energy thresholds (ECAL + HCAL)
 - ➡ Motivation CMS HGCAL: Increasing noise levels due to operation in high radiation environment
 - → By increasing energy thresholds, shower energy as well as **topology level reduced** (MIP tracks,...)
 - ➡ **Recalibration** of internal PandoraPFA calibration constants to allow fair comparison track cluster energy

3 Sigma Recovery Probability Neutral Hadron

Different Energy Thresholds for AHCAL Two Particle Events

Recovery Probability within 3 Sigma Neutral Hadron 10 GeV Neutral + 10 GeV Charged Hadron

Recovery Probability within 3 Sigma Neutral Hadron 10 GeV Neutral + 30 GeV Charged Hadron

- Total degradation of recovery probability by 20-30% (10+10 GeV) and by 5-15% (10+30 GeV)
 - Two particle separation more challenging with increased energy thresholds, specifically at lower energy

Jet Energy Resolution

Different Energy Thresholds for ILD Di-Jets

Jet Energy Resolution $lcos(\Theta)l < 0.7$ Pandora Energy Thresholds

- Basically no influence on JER for slightly increased thresholds (1 MIP)
- Even for highest threshold (3 MIP) degradation of JER "only" ~80% compared to default
 - Partly compensated by PandoraPFA's emergency/force algorithms towards Energy Flow?
 - Do detector effects/granularity play a less important role than expected as long as a PFA is powerful enough?
 - Is topology information exploited to full extent within PandoraPFA?

Mean Confusion Type Difference & Confused Energy Fraction

Different Energy Thresholds for ILD Di-Jets

- Inversion with respect to default threshold settings going from 2 MIP to 3 MIP threshold
 - Indication for reaching internal point of changing reconstruction paradigm in PandoraPFA (emergency/force Energy Flow algorithms)?

Summary & Conclusions

PandoraPFA Studies with AHCAL Beam Test and ILD Di-Jet Events

- Applied **PandoraPFA** on **AHCAL 2018** & ILD events to study limiting effects for **beam test data** & simulations
 - → Validated: Expected trends for confusion, two particle separation and total reconstruction performance
 - Across studies: Very good data to MC agreement 5-10% & same trends for AHCAL and ILD di-jet events
 - Gained detailed insights into PandoraPFA: Confirming expected changes of confusion types for changes in specific internal algorithms
 - Questions raised by energy threshold study: Optimised detector effects / ultra high granularity less important than expected in contrast to powerful PFA like PandoraPFA? Topology information fully exploited?
- Outlook: Closer look into energy threshold studies to draw explicit conclusions

Summary & Conclusions

PandoraPFA Studies with AHCAL Beam Test and ILD Di-Jet Events

- Applied PandoraPFA on AHCAL 2018 & ILD events to study limiting effects for beam test data & simulations
 - ➡ Validated: Expected trends for confusion, two particle separation and total reconstruction performance
 - Across studies: Very good data to MC agreement 5-10% & same trends for AHCAL and ILD di-jet events
 - Gained detailed insights into PandoraPFA: Confirming expected changes of confusion types for changes in specific internal algorithms
 - Questions raised by energy threshold study: Optimised detector effects / ultra high granularity less important than expected in contrast to powerful PFA like PandoraPFA? Topology information fully exploited?
- Outlook: Closer look into energy threshold studies to draw explicit conclusions

Thank you! (Special thanks to J. Marshall for his continuous support and advice to open Pandora's box!)

Summary & Conclusions

PandoraPFA Studies with AHCAL Beam Test and ILD Di-Jet Events

- Applied PandoraPFA on AHCAL 2018 & ILD events to study limiting effects for beam test data & simulations
 - ➡ Validated: Expected trends for confusion, two particle separation and total reconstruction performance
 - Across studies: Very good data to MC agreement 5-10% & same trends for AHCAL and ILD di-jet events
 - Gained detailed insights into PandoraPFA: Confirming expected changes of confusion types for changes in specific internal algorithms
 - Questions raised by energy threshold study: Optimised detector effects / ultra high granularity less important than expected in contrast to powerful PFA like PandoraPFA? Topology information fully exploited?
- Outlook: Closer look into energy threshold studies to draw explicit conclusions

Thank you! (Special thanks to J. Marshall for his continuous support and advice to open Pandora's box!)

Backup

Example for a Future e⁺e⁻ Experiment: ILC and ILD

The Precision Frontier

- International Linear Collider (ILC)
 - → $\sqrt{s} = 250 \text{ GeV}$ (upgradeable up to 1 TeV)
 - Polarised beams
- International Large Detector (ILD)
 - Time projection chamber (TPC) and silicon tracker
 - Highly granular calorimeters within the solenoid magnet
- Extensive physics program in clean and controlled environment: e.g. precision measurements of Higgs/E.W. sector, top quark,...
- One of many requirements: Sufficient separation of reconstructed di-jet masses of W and Z boson decaying hadronically

60

80

100

m_i/GeV

120

The Pandora Particle Flow Algorithm (PandoraPFA)

A Multi-Algorithm Pattern Recognition Tool

Illustration of Key Algorithms within PandoraPFA

J. S. Marshall: https://indico.in2p3.fr/event/7691/contributions/42712/ attachments/34375/42344/3_john_marshall_PFA_marshall_24.04.13.pdf https://github.com/PandoraPFA

- Challenge for PFA to keep confusion level low:
 - Clean separation of particle showers
 - Avoid double counting of energy
- State of the art: PandoraPFA
 - Highly recursive multi-algorithm chain using pattern recognition
- Hardware requirements:
 - Compact calorimeters within magnetic coil to minimise dead space behind tracker and allow clean track-cluster association
 - **Highly granular calorimeters** to exploit pattern recognition algorithms

The Analog Hadron Calorimeter (AHCAL) for ILD

Designed for Particle Flow Reconstruction

- Highly granular sampling calorimeter for the International Large Detector
 - ➡ Total of ~8 million single channels
 - One channel: Wrapped scintillator tile coupled to Silicon-Photomultiplier readout
- Compact design in octagonal cylinder within solenoid magnet:
 - ➡ Fully integrated front-end readout electronics
 - ➡ Internal LED calibration system, passive cooling scheme (power pulsing)

The CALICE AHCAL Prototype 2018

A Highly Granular SiPM-on-tile Sampling Calorimeter

- 38 layer steel sampling calorimeter (~4 λ_n) featuring a total of ~22000 channels
- Active layers (72 x 72 cm²) consisting of 576 channels
 - ➡ One channel: SiPM (Hamamatsu: MPPC S13360-5PE) coupled to wrapped scintillating tile (3 x 3 cm²)
- Scalable detector concept developed for the 8-million-channel AHCAL of ILD

AHCAL Prototype on Moveable Stage

38 Layers within Steel Absorber Stack

The CALICE AHCAL Beam Test Campaigns 2018

May, June and October @ SPS Cern

- Three successful beam test campaigns at SPS • **CERN** in 2018
- Data sets: .
 - Muons, electrons, pions
 - Energies: 10 200 GeV
 - Events: Multiple 10 million
 - Movable stage for beam aiming at different detector positions
- For this studies: June 2018 beam test data

HGCAL

main stack

Clustering

Re-Clustering

Track to Cluster Association

- Track-cluster association algs match cluster positions and directions with helix-projected track states at calorimeter.
- In very high-density jets, reach limit of "pure" particle flow: can't cleanly resolve neutral hadrons in hadronic showers.
- Identify pattern-recognition problems by looking for significant discrepancies between cluster E and track p.
- Choose to recluster: alter clustering parameters or change alg entirely until cluster splits and consistent E/p achieved.

J. S. Marshall: https://indico.in2p3.fr/event/7691/contributions/42712/ attachments/34375/42344/3_john_marshall_PFA_marshall_24.04.13.pdf

Fragment Removal

DESY. | Particle Flow Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | 6th Future Colliders @ DESY Meeting | 2nd December 2021 |

Tracks ↔ Clusters

Delay Wire Chambers (DWC)

Providing Tracks for Beam Test Events

- Beam Test June 2018: Four 100 x 100 mm² delay wire chambers (MWPCs)
- Position resolution of each chamber: ~600 μm
 - ➡ Sub-mm resolution at AHCAL front face
- Information extracted:
 - Reconstructed track for each event
 - Position calibration (Prototype moved on X-Y stage during beam test for position scans)
 - ➡ Measurement of scintillator tile gaps

Work done by Linghui Liu (U. Tokyo)

(https://agenda.linearcollider.org/event/8368/contributions/44971/ attachments/35214/54544/LL_AHCALmain_2019.pdf)

Brief Recap: AHCAL 2018 Calibration, Stability & Uniformity

First Part of my PhD Studies: Calibration/Validation & Variation Studies

- Performed pedestal extraction and MIP calibration, HG-LG inter-calibration
 - Validation studies for determined calibration constants
 - Variation studies for constants (detector modes, beam test periods)
- Shown: Excellent detector uniformity, stability and signal to noise ratio
- Provided energy calibration of prototype used in many analyses of 2018 data https://agenda.linearcollider.org/event/8213/contributions/44354/attachments/34779/53694/DH_calice_9_19_ahcal_calibration_v2.pdf

DESY. | Particle Flow Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | 6th Future Colliders @ DESY Meeting | 2nd December 2021 |

Pedestal Map Layer 5

20

15

Pedestal [ADC]

550

500

450

25

20

Shower Start Finding Algorithm

Finding the Layer of First Hard Hadronic Interaction

- Determines the layer of first hard interaction: Shower start layer based on number of hits and energy thresholds on layer level
- Optimised and tuned MC truth information of MC pion samples
- Achieved excellent results on same level as for study on last AHCAL prototype (<u>https://arxiv.org/abs/1105.3417</u>)
- ➡ Central tool for many other developed algorithms

Implemented in cooperation with Jonas Mikhaeil (University of Heidelberg) during supervision of his Bachelor's Thesis.

10 GeV π -

Track Quality Validation

Implemented Data & MC Tracks for PandoraPFA Studies

- Data tracks: Reconstructed from DWC of beam test
- MC tracks: Primary particle endpoint position extrapolation (truth)
- ➡ How is the track quality on average?

Note: Tracks almost completely straight since no B-field present and only p_z

- 97.5% (data) and 98.5% (MC) of events within 22 mm radius (tile center - corner distance)
- Most of the tracks hit a triggered channel in layer 1
- Excellent track quality validated for data and MC

Framework / Data Flow Diagram

Pandora Energy Calibration

MC Muons, Photons, K0L

Note: Without tracks and ECAL everything classified as neutral hadrons at this step

- Muons: AHCAL energy GeV -> MIP with negligible angle correction since straight TB tracks
- Photons and K0L's: Used to determine EM and HAD response, PFO energy tuned to peak at 10 GeV

Pandora Energy Calibration

MC Muons, Photons, K0L

Note: Without tracks and ECAL everything classified as neutral hadrons at this step

- **Muons**: AHCAL energy GeV -> MIP with negligible angle correction since straight TB tracks
- Photons and K0L's: Used to determine EM and HAD response, PFO energy tuned to peak at 10 GeV

Analysis Strategy - Overview

Note: No neutral hadron beam during beam tests

Developed Algorithms for Event Preparation & Selection

PandoraPFA Single Particles - AHCAL 2018 Data & MC

- Applied Boosted-Decision-Tree PID for hadrons (to remove beam contamination)
- Event: 10-80 GeV charged hadrons
- Track for charged hadron: Fixed sharp momentum
 - ➡ Data: Delay wire chambers at beam test; MC: MCTruth information
- Additional event selection (since no ECAL in front of AHCAL):
 - ➡ Track-hit match layer 1||2||3, track-detector-gap rejection
 - ➡ At least 10% of charged hadron energy associated to track
- PandoraPFA: ILD default settings with PFA recalibration, specific adaptions on algorithms and interface processor due to AHCAL geometry & standalone application

MC: GEANT4 v.10.03 QGSP_BERT_HP & FTFP_BERT_HP physics lists

Confusion (Double Counted Charged Energy)

How many Neutral Fragments and Double Counted Energy?

PandoraPFA Single Particles - AHCAL 2018 Data & MC

- Mean number of neutral fragments and double counted charged energy increasing with charged hadron energy
 - Richer topology within shower sub-structure for higher energies (more partially isolated sub-cluster)
- Slightly larger increase for simulations: Richer shower sub-structure topology compared to data?

Improvement in Single Particle Energy Resolution?

PandoraPFA Single Particles - AHCAL 2018 Data & MC

- Particle Flow: Factor 2 better single particle energy resolution compared to conventional calorimetry
 - ➡ Exploiting fixed track momentum
 - For higher energies: Resolution slightly decreasing due to increasing confusion level
- Good data to simulation agreement

Energy Resolution vs. Beam Energy Shower Start <= Layer 10

How well are Types of Confusion Balanced?

Double Counted Energy - Energy Loss Difference

- Highest shower distances: Double counted energy (additional neutral fragments in shower sub-structure) dominant
- Lowest shower distances: Energy losses (neutral hit absorption into charged) dominant
 - In-balance more pronounced for vicinity of 30 GeV charged hadron
 - ➡ Turning point ~200mm shower distance
 - ➡ Good Data/MC agreement: Within ~10%

How is the Total Fraction of Confused Energy Scaling?

Different PandoraPFA Settings - ILD Di-Jets vs. AHCAL 2018 Data

Mean Total Confusion Fraction vs. Di-Jet Energy

Mean Total Confusion Fraction vs. AHCAL Data Scenario

- Mean fraction of confused event energy is increasing with jet energy (local hit & energy density)
- Most fractional confusion energy for no fragment removal & no re-clustering, best for default settings
 - Combination of balance and low level of confused energy contributing to best JER for default settings

Jet Energy Linearity

Different PandoraPFA Settings

- For highest energies slight deviations of up to 5%
 - Default/Chi=1.5 still very close to perfect linearity
- Influence of confusion visible:
 - No fragment removal: Overestimated energy / double counted energy
 - No re-clustering: Missing energy due to absorption of neutral hadrons into charged

ILD Di-Jets

Recalibration PandoraPFA

- For each threshold scenario (1, 2, 3 MIP) 6 internal PandoraPFA calibration constants recalibrated with 10 GeV muons/photons and 20 GeV K0L according to ILD calibration instructions
 - → (Less) hits feature more energy after recalibration to allow fair track cluster matching for charged hadrons
 - After initial problems successfully done!

AHCAL Events

Recalibration PandoraPFA

PFO Energy Calibration 10 GeV K0L Treshold: 1 MIP

- For each threshold scenario (1, 2, 3 MIP) 1 internal PandoraPFA calibration constant recalibrated with 10 & • 30 GeV K0L for optimised PandoraPFA output
 - Different energy thresholds for different shower energies introduces non-linearity in energy reconstruction
 - Optimised to recover 10 & 30 GeV neutral hadrons simultaneously as accurate as possible (within 5%)
 - Quite easy procedure due to less complexity compared to ILD successfully done!

PFO Energy Calibration 30 GeV K0L Treshold: 1 MIP

10000

8.462

22.57 / 30

60

70

28.2

DESY. | Particle Flow Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | 6th Future Colliders @ DESY Meeting | 2nd December 2021 |

Jet Energy Resolution

Before and After Recalibration

Jet Energy Resolution $lcos(\Theta)l < 0.7$ Pandora Energy Thresholds

- Recalibration: Significant improvement in jet energy resolution, specifically for higher thresholds
 - Degradation of JER trend for highest energy threshold remain, but "only" up to ~80% (before: ~160%)
 - → For slightly increased thresholds 1 MIP basically no effect, for 2 MIP only 20% worse JER
- Expected worse performance: Pandora internal "emergency" algorithms seem to work properly DESY. | Particle Flow Studies with AHCAL 2018 Beam Test Data & ILD Jets | Daniel Heuchel | 6th Future Colliders @ DESY Meeting | 2nd December 2021 |

Jet Energy Linearity

Different Energy Thresholds (ECAL & HCAL)

Jet Energy Linearity $|\cos(\Theta)| < 0.7$ Pandora Settings

- Recalibration: Significant improvement in jet energy linearity, specifically for highest thresholds
 - ➡ For almost all jet energies within 5% to perfect linearity
 - ➡ Still slightly off due to difficult PFA reconstruction with increasing confusion term

Mean Confusion Type Difference

Different PandoraPFA Energy Thresholds

Normalised to Mean Full Event Energy

- Confusion type balance changes only slightly with increasing energy thresholds
 - Small trend towards neutral energy loss for 1 & 2 MIP
 - ➡ Balanced better for 3 MIP?
 - Emergency algorithms taking over?
- Hypothesis for 3 MIP thresholds: MIP tracks within shower sub-structure are mostly gone:
 - Trend towards double counted charged energy is increasing again
 - Artificial topological separation between different particle showers