Hadronic Shower Substructure Reconstruction using Graph Neural Networks

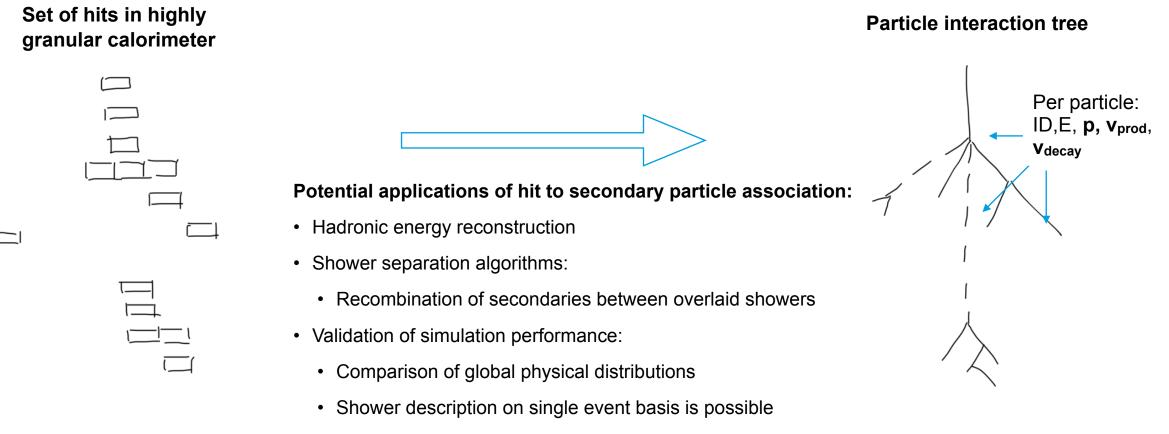
AHCAL main meeting

Vladimir Bocharnikov (DESY) 8 Dec 2021

IELMHOLTZ RESEARCH FOR GRAND CHALLEN

Calorimeter vision for hadronic showers

Ultimate goal and general approach



➡ essential for adversarial networks

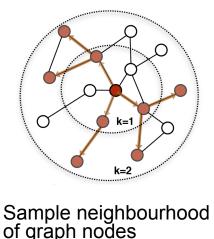
Graph representation of calorimeter event

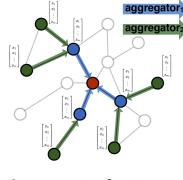
First steps

Event graph:

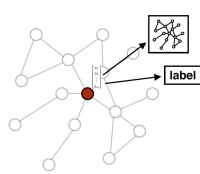
- O Nodes calorimeter hits
- O Node features position, energy, (time)
- Edges neighbours within distance < R_{max} (Radius graph)
- Edge weights 1 if pair of hits belong to same **fundamental object** (e/m sub-shower, track), otherwise 0
- O ML objective predict edge weights given the radius graph of event

<u>GraphSAGE</u> (SAmple and aggreGatE) architecture (Graph neural network model (GNN)):

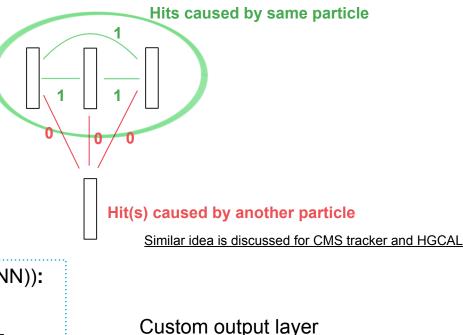


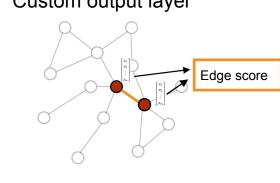


Aggregate feature information from neighbours



Get graph context embeddings for node using aggregated information





Predict edge score for each pair of connected nodes using embedded features

DESY. | Hadronic Shower Substructure Studies with GNN, 8 Dec 2021 | Vladimir Bocharnikov

Truth information from Monte-Carlo

Algorithm to find truth e/m objects

Simulations

Geant4 (v10.03.p02) QGSP_BERT_HP using CALICE AHCAL geometry

Pure energy deposition in cells (before digitalisation and reconstruction)

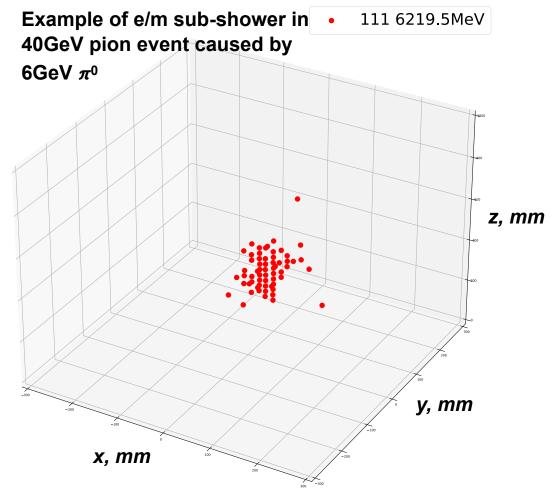
Truth electromagnetic sub-shower definition:

"Electromagnetic" particles: e^{\pm} , γ , π^{0} , η

Energy threshold - 0.1GeV (arbitrary now)

If MC particle is "electromagnetic", all it's "electromagnetic" daughters compose e/m shower are removed from further consideration

Corresponding simulated hits compose sub-shower, 0.5MIP cut: E_{hit} >0.25MeV



MC history for **ionising particles** is more complicated to easily define individual objects (tracks). Work in progress

Datasets and model parameters

Edge score model

Train&test dataset:

- ~6000 MC event graphs (50/50 split)
 - Pure energy deposition in calorimeter cells (before digitalisation and reconstruction)
 - 10-100 GeV pion samples
- ➡ Radius graphs with calorimeter hit nodes (x,y,z,E_{hit}) *R_{max}* = **59** *mm*
 - Electromagnetic relation between hits is encoded in edge scores (0/1)

Model:

GraphSAGE GNN

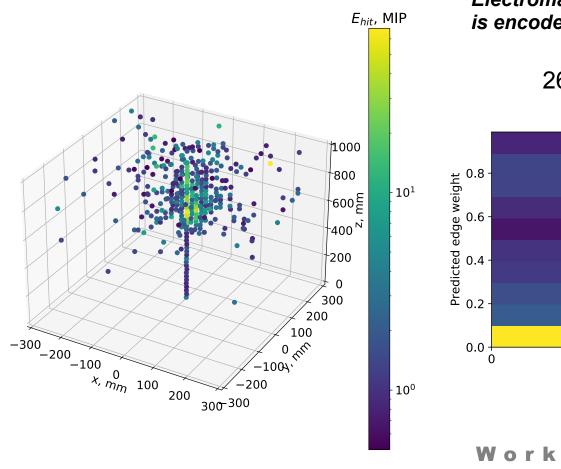
8 layers with 16 hidden channels + 1 linear output layer to convert node embeddings to edge scores

Objective: prediction of edge scores

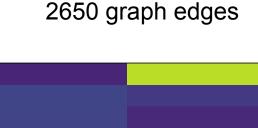
Loss: binary cross entropy

Hadronic shower reconstruction with GNN

Results for single test event.



Electromagnetic relation between hits is encoded in graph edge weights:



Truth edge weight

i n

450

400

350

- 300

- 250

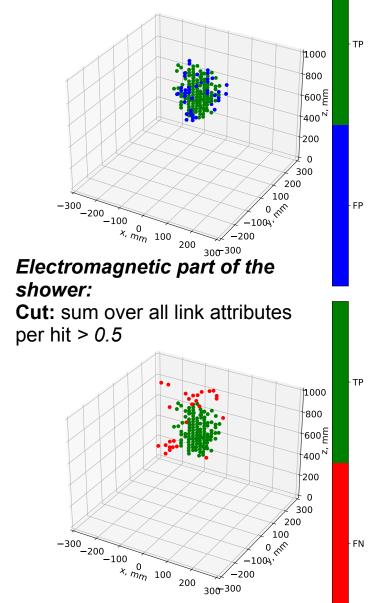
200

- 150

- 100

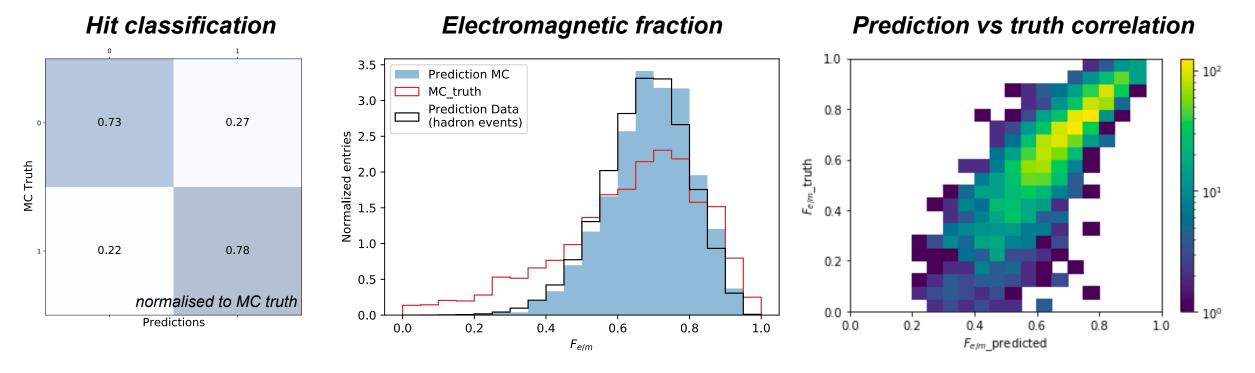
50

progress...



Electromagnetic fraction of hadronic showers

Results for 10,20,30,40,60,80 GeV pions



- ~75,5% hit classification accuracy
- Higher MPV for Fem than expected
 - ➡ Non-e/m contributions to the hits are not taken into account
- Less pronounced tails for F_{em} prediction than for MC truth
- DESY. | Hadronic Shower Substructure Studies with GNN, 8 Dec 2021 | Vladimir Bocharnikov

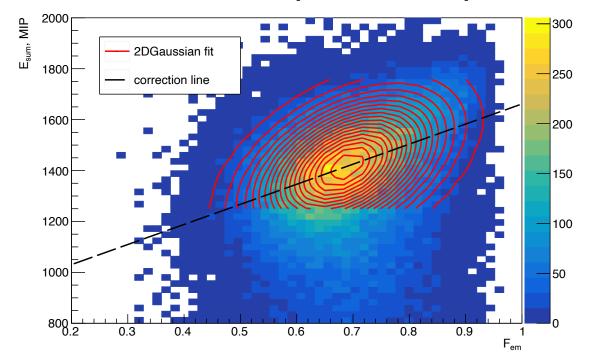
Reasonable correlation of predicted EM fraction with truth in MPV region

Work in progress...

Hadronic shower reconstruction with GNN

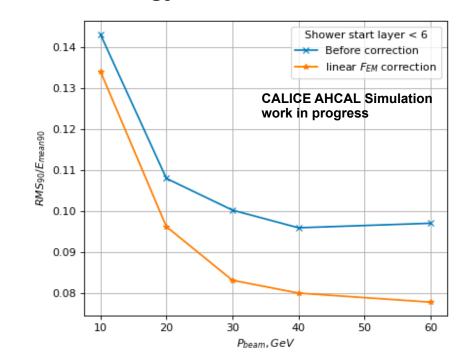
Using reconstructed EM fraction for energy correction

Correlation example for 40 GeV pion



- Well pronounced correlation between E_{sum} and F_{em} observed for all energies
- For each energy point simultaneous gaussian fit is performed to extract the correction line

Energy resolution estimation



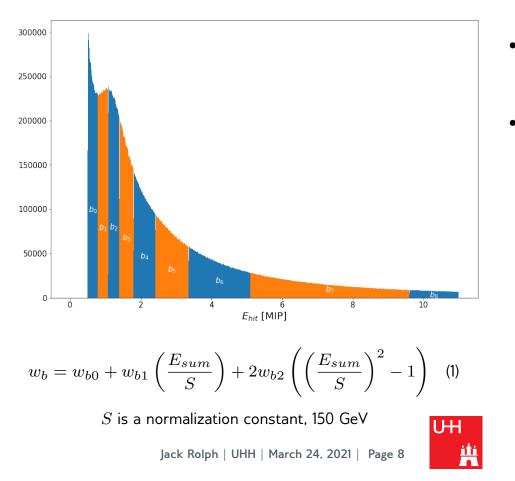
- Simple linear correction gives resolution improvement of ~6-20%
- Promising resolution improvement, baseline for more complex compensation algorithms using reconstructed EM information

"Standard" LSC

Code provided by Jack (used as a reference)

- *E_{hit}* distribution split into bins of equal frequency probability;
- i.e. equal likelihood
 (on average!) of hits
 falling into each bin.
- Three weights defined, per bin, using Chebyshev Polynomial;
- Fraction of shower energy falling into each bin is weighted according to the E_{sum}.

CALI (CO

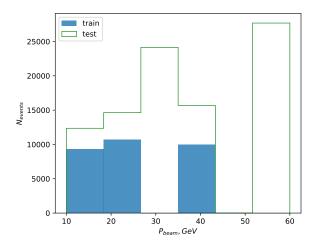


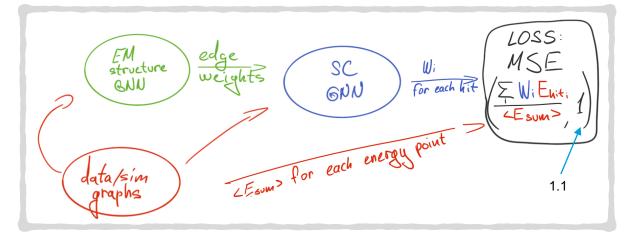
- Binning and weights are updated with latest available simulations
- 10-80 GeV range
 - 10K events before shower start cut:
 - 2 < st < 15
 - 28652 events in total

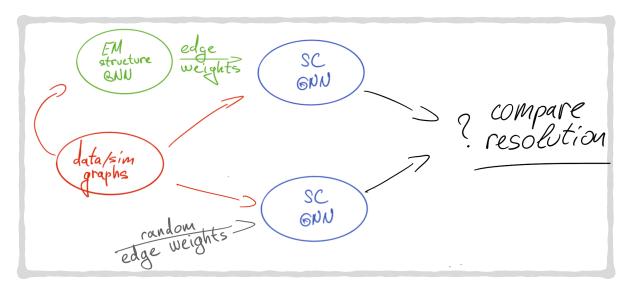
Energy reconstruction using predicted EM information

SC experiment

- Test if use of predicted edge weights improves the energy resolution
- Almost same GNN as for EM structure prediction:
 - 1 GraphSAGE layer replaced with <u>ARMAConv</u> (capable to exploit edge attributes during message passing), output has shape [N_{nodes}]
 - Train using predicted EM edge weights
 - Simulations: 10,20,40 GeV, st<6, 30 Kevents
 - Compare resolution for the test sample using predicted EM attributes or random edge weights
 - Simulations: 10,20,30,40,60 GeV, st<6



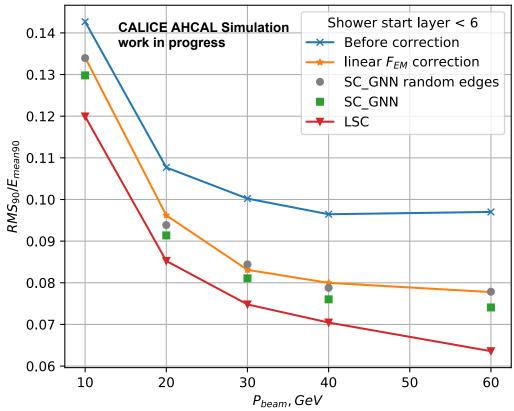




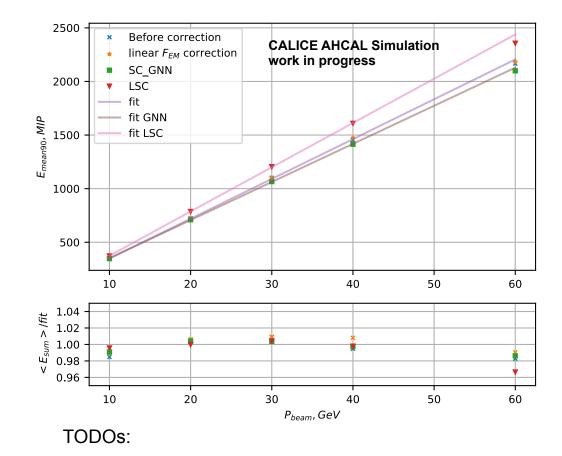
DESY. | Hadronic Shower Substructure Studies with GNN, 8 Dec 2021 | Vladimir Bocharnikov

Resolution and linearity

10-60 GeV. Simulations only.



- SC_GNN gains some resolution performance by using reconstructed EM connections between hits
- Problems with LSC linearity are already visible at 60GeV (fit range was up to 80 GeV)

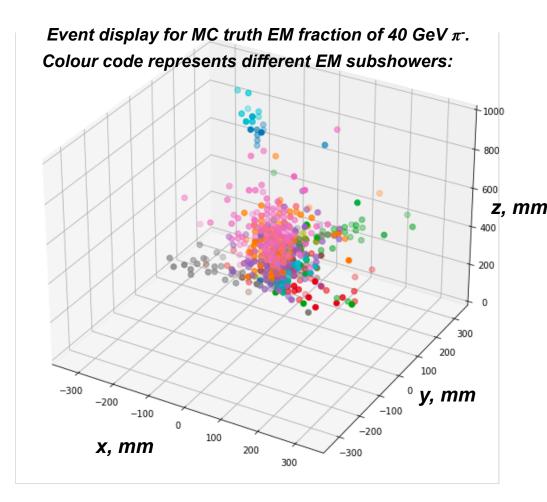


- Estimate leakage effect (check if methods are doing leakage correction in addition to SC) using tail catcher information
- Compare with TB data

Towards distinct secondary particle reconstruction Outlook

Motivation:

- In HAD showers we can have many EM subshowers at first HAD interaction (overlaid) and later in the had cascade (displaced)
- Further look into the structure of EM fraction:
 - Reconstruct distinct particle components
 - No easy rule-based algorithm to merge overlaid subshowers on MC truth level ⇒ go unsupervised!
 - Test Bayesian Gaussian Mixture model with Dirichlet
 process on point clouds from calorimeter events
 - <u>SKlearn implementation</u> is tested, own flexible <u>Pyro</u> implementation is planned
 - ➡ Tune training dataset for substructure GNN
 - e.g. energy thresholds (some EM sub showers have topology closer to ionising tracks)

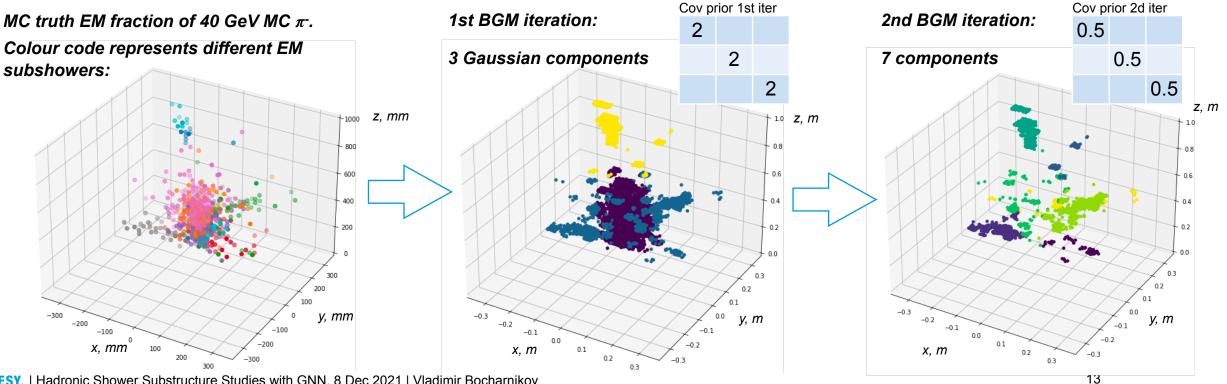


Applying Bayesian GM to EM component of had showers

Truth EM component

- SKlearn implementation can handle only scatter plots ٠
- To keep hit energy information, artificial scatter plot is produce: ٠
 - 10 points per MIP ٠
 - uniformly distribute within cell volume: ±15mm,±15mm,±1mm ٠
 - Normalise coordinates: (-0.36m,0.36m) (-0.36m,0.36m) (0m,1m) ٠

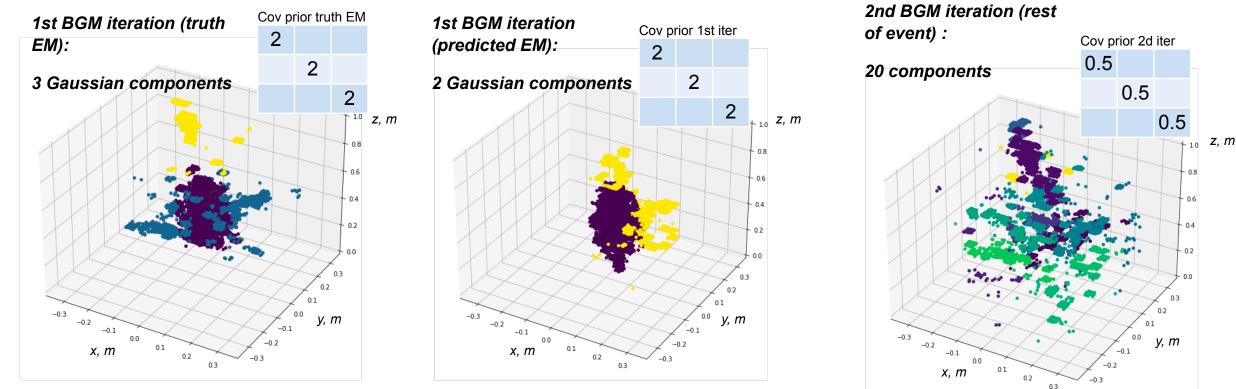
- Max number of components = 10,
- Object size can be optimised by modifying covariance prior
- Clusters can be filtered by likelihood and energy density



DESY. | Hadronic Shower Substructure Studies with GNN, 8 Dec 2021 | Vladimir Bocharnikov

Applying Bayesian GM to EM component of had showers

Truth vs reco EM component



· Visual similarity for main gaussian component

- Hints of agreement for E_{sum} and E_{density} on several hundred events between truth and predicted EM fraction (see backup slides)
- Physical observables to be determined and compared with TB data
 - · some examples of main GM component distributions in the backup

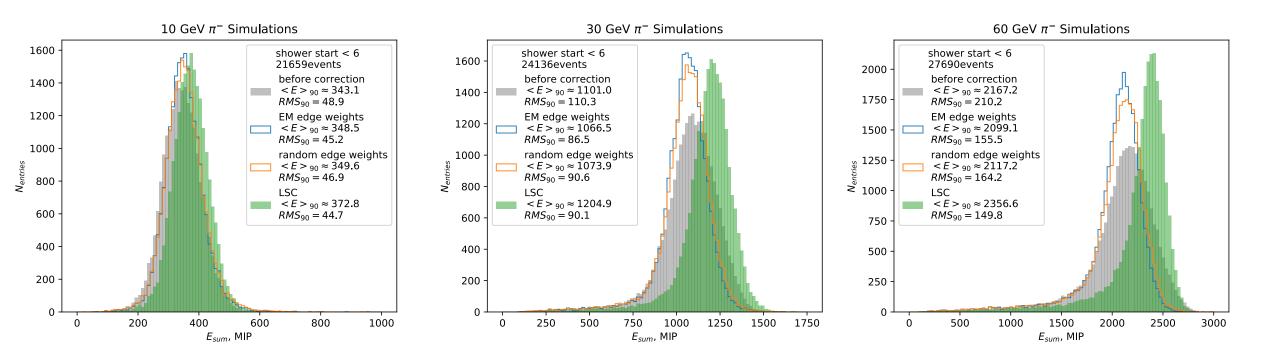
Smaller clusters are more challenging

➡ Room for improvement

Conclusion

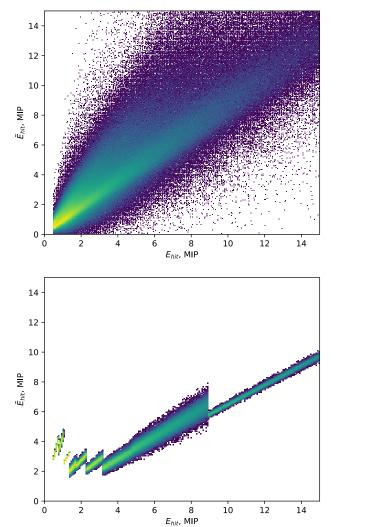
- Reconstruction method for electromagnetic substructure of hadronic showers using Graph Neural Networks is presented
- Reconstructed electromagnetic structure can be used to improve hadronic energy resolution
 - GNN software compensation model is capable to exploit EM information
 - can extrapolate and interpolate to different energies
 - Better performance for "standard" local SC to be understood
- Gaussian Mixture model is a promising tool to reconstruct distinct particle contributions within hadronic showers

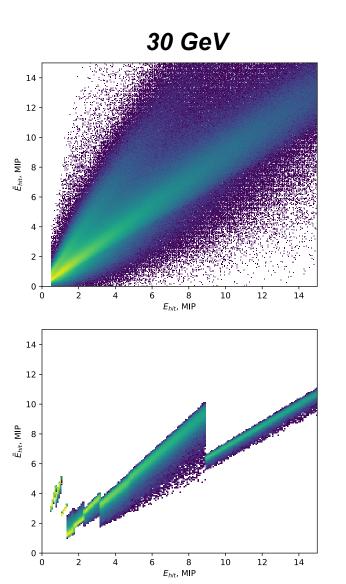
Single energy examples



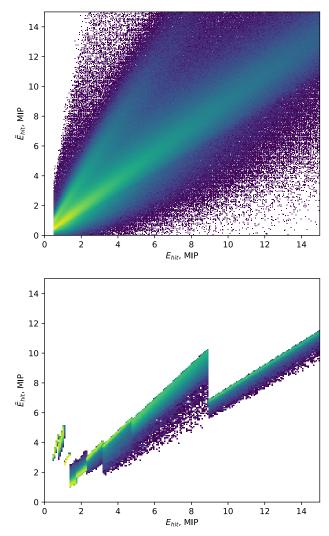
Hit energies GNN vs LSC. Simulations

10 GeV





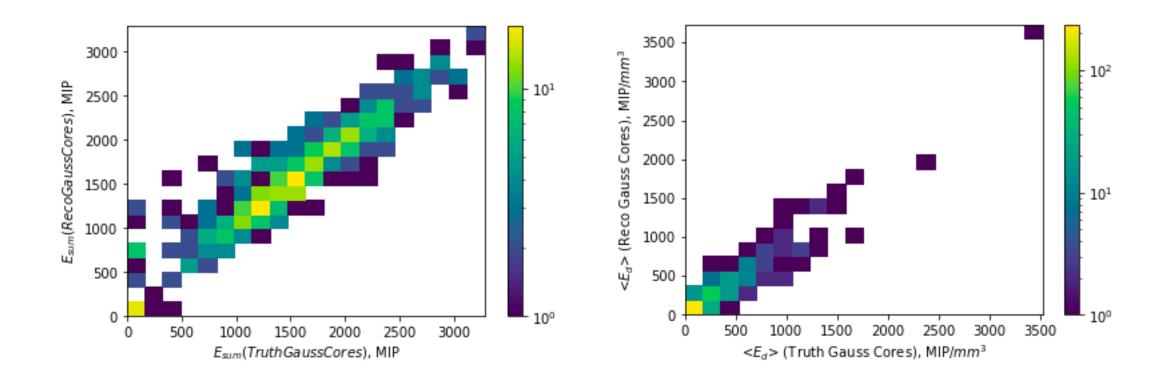
60 GeV



DESY. | Hadronic Shower Substructure Studies with GNN, 8 Dec 2021 | Vladimir Bocharnikov

Truth vs reco EM

500 40GeV pion events

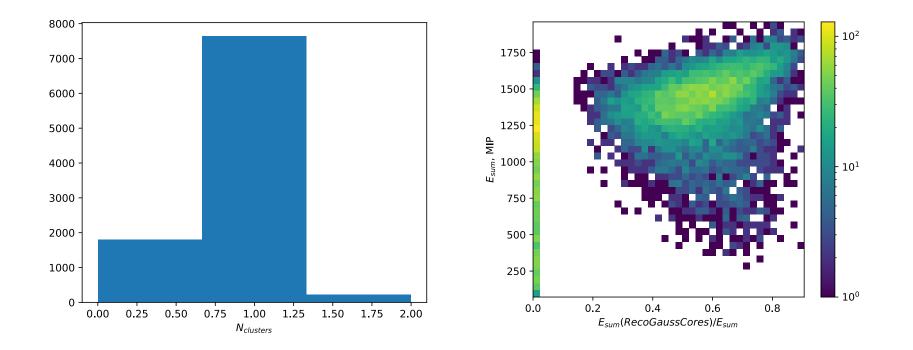


Applying GM to larger dataset

Some distributions for simulated 40 GeV pions. 10 Kevts.

- Reconstructed EM fraction.
- Shower start found

- Quality metrics (optimised on several events)
 - likelihood > 2 (first guess)
 - energy density in ellipsoid [MIP/mm³] > 20 (first guess)

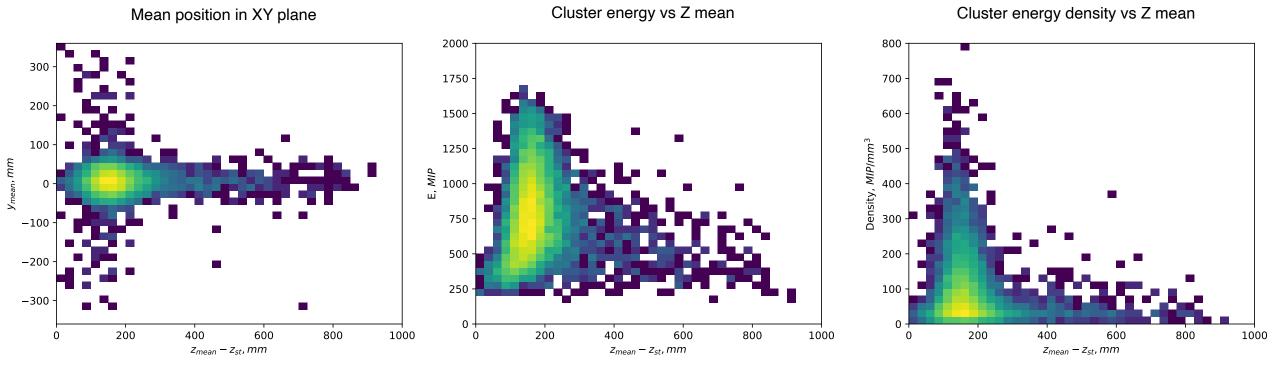


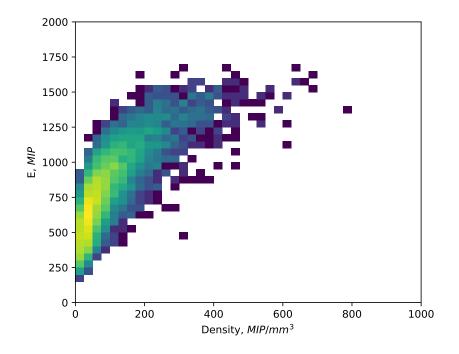
Main gaussian component (shower core)

Some distributions for simulated 40 GeV pions. 10 Kevts.

- Reconstructed EM fraction.
- Shower start found

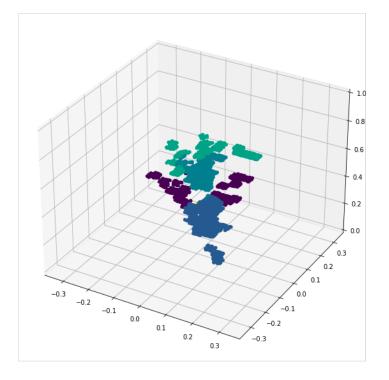
- Quality metrics (optimised on several events)
 - likelihood > 2 (first guess)
 - energy density in ellipsoid [MIP/mm³] > 20 (first guess)

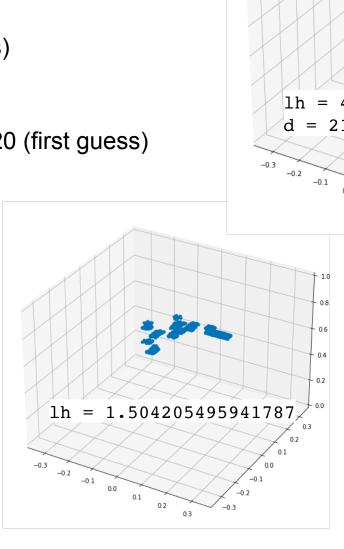


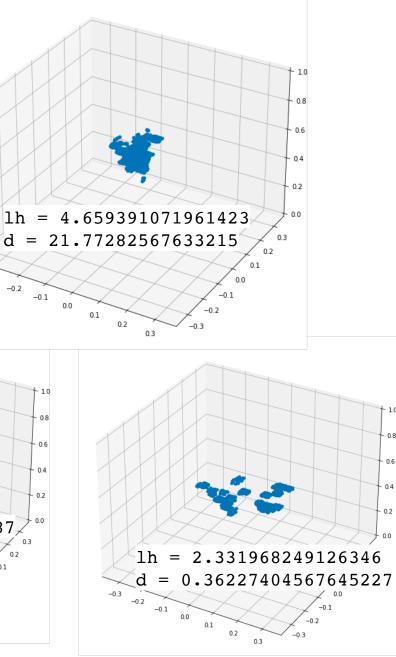


Dealing with background clusters

- Quality metrics (optimised on several events)
 - likelihood > 2 (first guess)
 - energy density in ellipsoid [MIP/mm³] > 20 (first guess)







CALICE AHCAL

Test beam prototype.

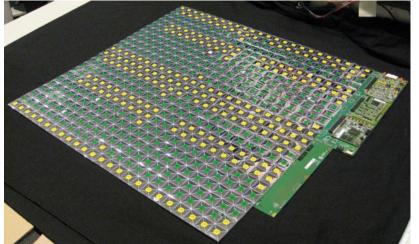
39 active layers of 24x24 scintillator tiles ($3x3 \ cm^2$ each) with individual SiPM readout. Active layers alternate with $\sim 2 \ cm$ steel absorber.

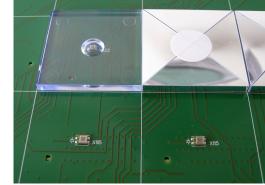
In total: ~22000 channels (<1‰ dead channels), ~4 λ, ~38X0

Beam particles: muons, electrons, pions

Energy range: 10-200 GeV in 10-40 GeV steps

O(1M) hadron events per energy point

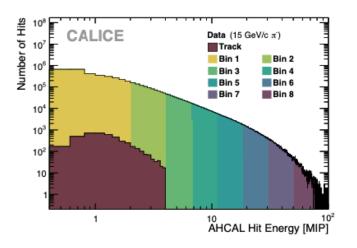


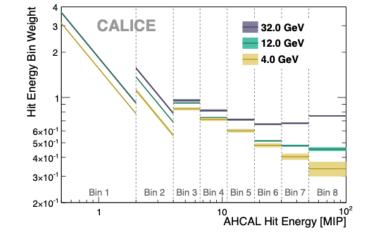


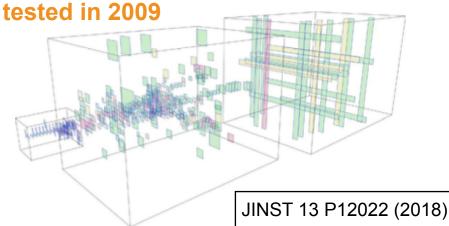
Software compensation method

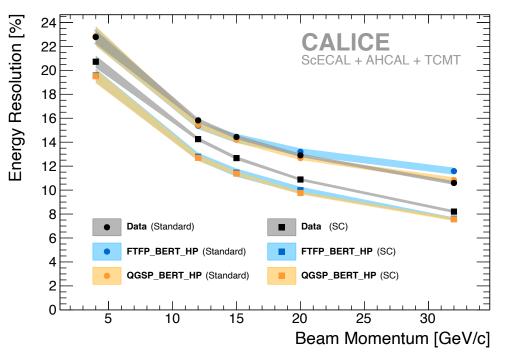
Example for CALICE combined setup ECAL+AHCAL+Tailcatcher tested in 2009

- h/e response compensation by assigning energy-dependent weights to hit energies (⇒local energy density)
 - Higher weights for low energy hits dominated by HAD component
 - Lower weights for high energy hits dominated by EM component
- 8 bins for hit energies
 - · Polynomial fit to get energy dependent weight for each bin
- ➡ Energy resolution improvement 10-20%
- Disadvantages: limited to fit energy range, polynomial dependence has no physics motivation, additional topological information of hit context is not used





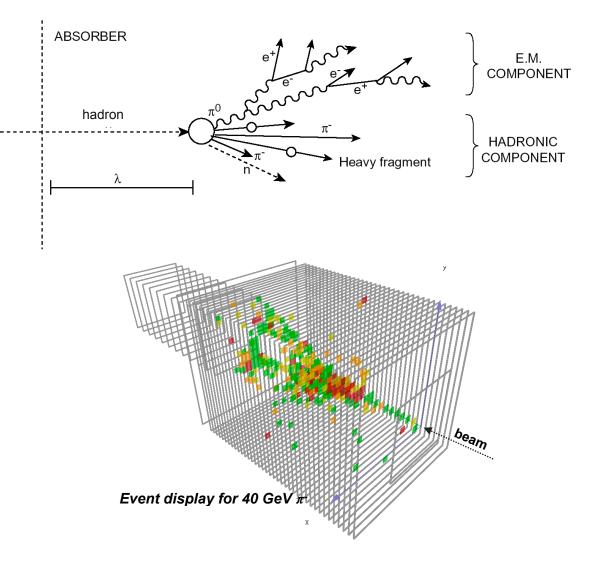


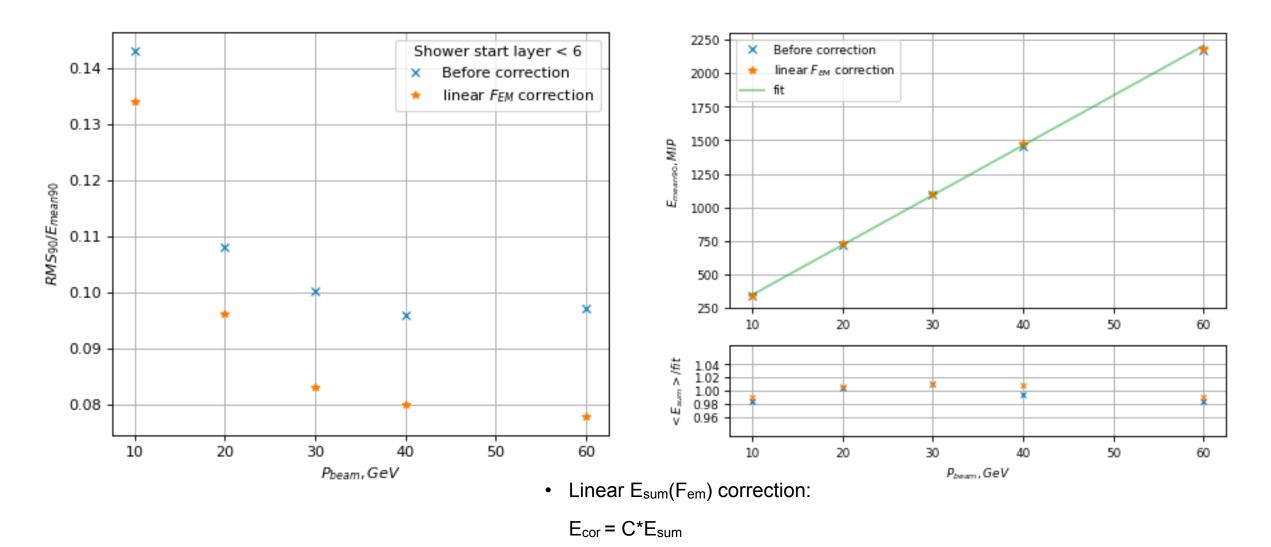


Hadronic showers

General properties

- Hadronic shower development is rather complex:
 - Narrow EM core component from π^0/η
 - Surrounding halo dominated by charged hadrons
 - Large event-by-event fluctuation of EM/HAD ratio
 - Response to EM and HAD components is different in non-compensating calorimeters
 - Invisible energy as binding energy, nuclear recoil, neutrinos + late component
 - ➡ Limited hadronic energy resolution
 - Detailed simulation is challenging
- Highly granular calorimeter prototypes
 - Imaging capabilities provide detailed calorimetric images
 - Real test beam data for crosschecks and development of data-driven algorithms



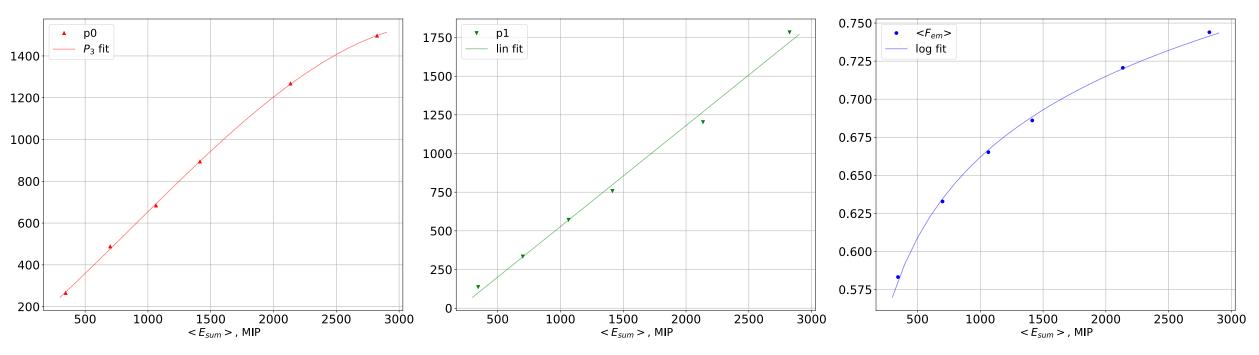


 $C = \langle F_{em} \rangle / (p_1 \cdot F_{em} + p_0)$

Unified correction

Getting P_{beam}-independent correction

Work in progress...



Correction parameters as a function of <E_{sum}>:

- p_{0} , p_{1} and $\langle F_{em} \rangle$ are calculated for each event from the observed energy using resulting fits
 - More energy points need to be included to check the overfitting
 - Parameter uncertainties are not taken into account
 - Performance decrease for resolution ~3%

DESY. | Hadronic Shower Substructure Studies with GNN, 8 Dec 2021 | Vladimir Bocharnikov