Investigations of AHCAL Test Beam Data (June 2018) from a new Master's student

André Wilhahn

08.12.2021

Supervised by Stan Lai and Julian Utehs

GEORG-AUGUST-UNIVERSITÄT Göttingen

Index

1 Introduction

2 Plots of Test Beam Data

- 10 GeV Electron and Pion Beams
- Different Pion Beam Energies
- Fitting Energy Distributions
- Conversion Factors

3 Conclusions and Outlook

1 Introduction

2 Plots of Test Beam Data

- 10 GeV Electron and Pion Beams
- Different Pion Beam Energies
- Fitting Energy Distributions
- Conversion Factors

3 Conclusions and Outlook

About Me

- Master's student at the Georg-August-University Göttingen
- Working on CALICE/AHCAL since October 2021
- Plan to investigate simulation techniques of high-granularity calorimetry
- First exercise: Investigate June 2018 AHCAL test beam data

 $\Rightarrow Familiarize with CALICE/AHCAL$

1 Introduction

Plots of Test Beam Data

- 10 GeV Electron and Pion Beams
- Different Pion Beam Energies
- Fitting Energy Distributions
- Conversion Factors

3 Conclusions and Outlook

Plots of Test Beam Data

Test Beam Data Acquisition

- Data taking in June 2018 at CERN
- Exposition of physics prototype to electron and pion test beams

Energy Distributions

- $\bullet\,$ Electron peak narrower than pion peak at about $400\,{\rm MIP}$
- Energy resolution better for electrons
- Second pion peak probably due to $\pi^{\pm} \to \mu^{\pm} \overset{(-)}{\nu}_{\mu}$

Transversal Shower Radius (only Pions)

- Expected behavior for hadronic showers
- Peak at $\sim 0 \,\mathrm{mm}$ supports muon hypothesis

Transversal Shower Radius vs. Number of Hits

- Large range of radii for large range of number of hits (caused by showers)
- Small radii at around 38 hits
 - \Rightarrow Consistent with muon hypothesis (only ~ 1 hit per layer)

Radius as function of number of hits

André Wilhahn

Transversal Shower Radius (Electrons and Pions)

• Electromagnetic showers narrower than hadronic showers

Mean Shower Radii for 10 GeV Pion and Electron Beams

Longitudinal Center of Gravity

• Electromagnetic showers obviously much shorter \Rightarrow Electrons deposit energy within first 20 cm

Center of Gravity (z-axis) for 10 GeV Pion and Electron Beams

Energy Distributions

Measured energy varies more intensely for higher beam energies
 ⇒ Broader distributions with smaller peaks

Total Energy for different Pion Beam Energies

André Wilhahn

Transversal Shower Radii

- Shower radii show similar behavior, but grow at higher energies \Rightarrow But fluctuations become less
- Also less muons at higher energies

Mean Shower Radii for different Pion Beam Energies

André Wilhahn

Longitudinal Centers of Gravity

• Energy is deposited over large range of layers

Center of Gravity (z-axis) for different Pion Beam Energies

Fit Curves for Pions

● Fit Gaussian bell curve to data within certain interval
 ⇒ Determine mean and standard deviation

Sum of Energies of Hits (10 GeV)

Pion Beam Energy Resolutions

- Expected falling behavior for higher energies
- Resolution ranging between $\sim 20 \% 11 \%$

Fit Curves for Electrons

• Same fitting procedure as for pions

Sum of Energies of Hits (10 GeV)

Electron Beam Energy Resolutions

- Resolution far better than for pions (as expected)
- Resolution ranging between $\sim 8\,\% 3\,\%$

Conversion Factors - Pions

- Plot mean (from fits) versus beam energy
- Fit linear function of form f(x) = mx
- Nominal conversion factors: $2.68 \times 10^{-2} \,\text{GeV}\,\text{MIP}^{-1}$ or $37.3 \,{\rm MIP} \,{\rm GeV}^{-1}$
 - \Rightarrow Results less accurate due to worse energy resolution

Conversion Factor between GeV and MIP for Pions

Conversion Factors - Electrons

- Also fit f(x) = mx for electron data
- Compare again with $2.68 \times 10^{-2} \,\mathrm{GeV \, MIP^{-1}}$ and $37.3 \,\mathrm{MIP \, GeV^{-1}}$
 - \Rightarrow Conversion factors more precise than those from pion fits
 - \Rightarrow Still room for improvement, though

Conversion Factor between GeV and MIP for Electrons

1 Introduction

2 Plots of Test Beam Data

- 10 GeV Electron and Pion Beams
- Different Pion Beam Energies
- Fitting Energy Distributions
- Conversion Factors

3 Conclusions and Outlook

Conclusions and Outlook

Conclusions:

- First look for myself at AHCAL test beam data
- Features make sense and match expectations
- Obtained good understanding how to analyze AHCAL data format

Outlook:

- Parametrize pion showers analytically (i.e. Olin's studies)
- Create probability density distributions of fit parameters
- Investigate fit parameter distributions
 ⇒ Extrapolate to different energies
- Build Fast Simulation based on analytical functions
 - \Rightarrow Simulate pion showers and compare with data
 - \Rightarrow Investigate mismodeling
 - \Rightarrow Will allow tuned simulation without using GEANT4
 - \Rightarrow Possibly extend to electron showers

Conclusions and Outlook

Thanks for your attention!

André Wilhahn

Marzipan-Meeting

08.12.2021 23 / 23