
SiWECal RawROOT to LCIO converter

Hector Garcia Cabrera

Updates

30/11/21
Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 1 / 10

Current SiWECal event building process

Currently the process of event building follows the next steps:

ASCII files are converted into RawROOT files.

RawROOT files are converted into ROOT with events built in it.

However the standard ILC Software uses the LCIO data format. Ideally the
DAQ produces a binary file that it is directly converted into a LCIO file.

Currently the LCIO converter takes the RawROOT file as input.

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 2 / 10

Building and execution

The code will be in the eventbuilding folder of the SiWECal repository.

Building:
source ${ILCSoftPath}/init_ilcsoft.sh (REQUIRED) (VERSION
v02_02_02)

run ./script/build.sh [Full]

Dependencies: CMake >= 2.6 and C++17
Produces an app folder with the executable ECal_EventBuilding.

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 3 / 10

Building and execution

The code will be in the eventbuilding folder of the SiWECal repository.

Running: ./app/ECal_EventBuilding –help for a description of all options.
The only one required is the name of the RawROOT file.

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 4 / 10

Build algorithm

So far the event building algorithm is an adaptation to c++ of Jonas’ code.

Reading RawROOTFile

BCID merging

Pedestals subtraction

Mip calibration

Converting into LCCalorimeterHits

Writing the LCIO File

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 5 / 10

LCIO output

LCIO File (default = TB_${RunNumber}.lcio)
|→ LCHeader
| |→ RunNumber
| |→ detectorname = ECAL15Slabs_2021
|→ LCEvents
| |→ Eventnumber
| |→ BCID
| |→ Parameters()
| | |→ Spill
| | |→ Prev_BCID
| | |→ Next_BCID
| | |→ Sum_HG
| | |→ Sum_Energy
| | |→ NHit_Slab
| | |→ NHit_Chip
| |

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 6 / 10

LCIO output

LCIO File (default = TB_${RunNumber}.lcio)
| |→ LCCollection (default = ECalEvents, type = CalorimeterHit)
| | |→ Hit_Energy
| | |→ HitX
| | |→ HitY
| | |→ HitZ
| | |→ CellIDEncoding : "S:4;CP:4:CH:6;SC:4;IH:1;IM:1;IC:1"

S = Hit_Slab CP = Hit_Chip CH = Hit_Channel SC = Chip_Sca
IH = IsHit IM = IsMasked IC = IsCommissioned Two missing variables:

Hit_HG and Hit_LG due them being float values.
Possibility: store them in the Time and EnergyError variables.

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 7 / 10

Conclusion

Advantages:
LCIO is the standard format of the ILC collaboration. Future events
whith synchronization between different modules will use this common
framework.
Adapting prototype simulation analysis, in the context of ilcsoft
framework, to beam test data will require simple changes of the
processors.
Access to all high level analysis processor already implement in ilcsoft.

Disadvantages:
Fast and testing analysis is cumbersome due to the setup of the Marlin
Processors. Particularly for newcomers.
LCIO files are usually heavier than simple ROOT files.

NEXT STEPS: Start the conversion chain from the ASCII file.

Once discussed modifications are completed the converter a pull request will
be available in the SiWEcal repository.

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 8 / 10

Backup

Backup

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 9 / 10

RawROOT

Hector Garcia Cabrera (CIEMAT) SiWECal - LCIO 30/11/21 10 / 10

