Muon g-2 anomaly + SUSY (theory)

The 75th General Meeting of ILC Physics Subgroup

December 15, 2021, online talk

Teppei Kitahara Nagoya University

Magnetic dipole moment (g-2)

Definition of "spin g-factor"

 $\mathcal{L} = -\frac{eQ_{\ell}}{4m_{\ell}}\bar{\ell}\sigma_{\mu\nu}\ell F^{\mu\nu} - \frac{eQ_{\ell}}{4m_{\ell}}$ Equation of motion ftree level "F₁(0)" $\mathcal{L} = \bar{\ell}(i\not\!\!D - m_{\ell})\ell$ radiative

$$\mathcal{H} = -\frac{eQ_{\ell}}{2m_{\ell}}g_{\ell}\vec{S}\cdot\vec{B} = -\vec{\mu}_{\ell}\cdot\vec{B}$$

rest frame

spin-magnetic interaction

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

spin magnetic moment:

$$\vec{\mu}_{\ell} = g_{\ell} \frac{eQ_{\ell}}{2m_{\ell}} \vec{S}$$

observable

The muon g-2

Theory (four g-2 contributions)

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

Exp.

BNL '97-'01

FNAL Run4 was done J-PARC near future

by-light (HLbL)

Current situation of muon g-2

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Endo, Iwamoto, TK, High Energy News, 2021]

mass

Higgs

[Keshavarzi, Marciano, Passera, Sirlin, 2006.12666] Logical possibility: is there unknown QCD

contribution to HVP?

This possibility is severely constrained by the electroweak (EW) fit (right figure)

EW fit could be no problem, only when the low energy region of $e^+e^- \rightarrow$ hadrons $(\sqrt{s} \leq 0.7 \,\text{GeV})$ are modified by unknown QCD.

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

Status of HVP (1/2)

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

MUonE experiment

Use μ^{\pm} + fixed $e^- \rightarrow \mu^{\pm} e^-$ elastic scattering

Test run was approved for 2021.

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

- The MUonE experiment at CERN can directly and precisely prove HVP [MUonE collaboration, 2004.13663]

[Passera, KEK-PH2021]

By using 3 years data, statistical sensitivity is 0.3% on $a_{\mu}^{\text{HVP-LO}}$ (current tension is 2% on $a_{\mu}^{\text{HVP-LO}}$)

For theoretical uncertainties, NLO corrections were ready and NNLO is close to completion. [Budassi et al., 2109.14606]

Naive NP energy scale (1/2)

Muon g-2 anomaly implies that NP mass scale is around the electroweak scale.

$$\Delta a_{\mu} \equiv a_{\mu}^{\text{BNL}+\text{FNAL}} - a_{\mu}^{\text{SM}} = (25)$$
$$= \frac{m_{\mu}^2}{16\pi^2} \frac{g_{\text{NP}}^2}{M_{\text{NP}}^2}$$

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

 $(5.1 \pm 5.9) \times 10^{-10} (4.2\sigma)$

 $M_{\rm NP} \sim g_{\rm NP} \times 150 \,{\rm GeV}$

NP scale $M_{\rm NP}$ is determined by size of the NP couplings to muon $g_{\rm NP}$ Large g_{NP} by certain mechanisms (e.g., "tan β enhancement", chiral enhancement) \rightarrow TeV scale NP models (e.g., Supersymmetry) Small $g_{\rm NP}$ (e.g., $g \sim 10^{-3}$) **Point:** MeV scale NP search is difficult at the LHC \rightarrow MeV scale NP models because of so much QCD background noise

Muon g-2 anomaly + SUSY (theory) **Teppei Kitahara** (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

New physics models

https://publicdomainq.net/

New physics interpretations

NP type	diagrams	mass range	probe
Supersymmtery	ji r , W. B., H.,	200~500 GeV	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \to \left(h\widetilde{\chi}_{1}^{0}\right)\left(W^{\pm}\widetilde{\chi}_{1}^{0}\right)$ $pp \to \gamma\gamma \to \widetilde{\ell}\widetilde{\ell}^{*}$
Leptoquark	LQ ~ ~ b.t	1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$
Vector-like lepton		100 GeV \sim 1 TeV	$\begin{array}{c} h \rightarrow \mu^{+} \mu^{-} \\ Z \rightarrow \mu^{+} \mu^{-} \end{array}$
Scalar extensions		10~100 GeV (A), 150~300 GeV (H)	$Z \to \tau^+ \tau^-$ $pp \to HA \to 4\tau$
Axion-like particle		40 MeV~200 GeV	$e^+e^- \to \gamma a \to 3\gamma$
U(1) Lμ-Lτ		10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K \rightarrow \mu\nu Z', \ \mu e \rightarrow \mu e Z'$

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

See [Endo, Iwamoto, TK, High Energy News, 2021] for details

New physics interpretations

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

mass range	probe	
200~500 GeV	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \to \left(h\widetilde{\chi}_{1}^{0}\right)\left(W^{\pm}\widetilde{\chi}_{1}^{0}\right)$ $pp \to \gamma\gamma \to \widetilde{\ell}\widetilde{\ell}^{*}$	
1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$	
100 GeV \sim 1 TeV	$ \begin{array}{c} h \rightarrow \mu^{+} \mu^{-} \\ Z \rightarrow \mu^{+} \mu^{-} \end{array} \end{array} $	
10~100 GeV (A),	$Z \to \tau^+ \tau^-$	
150~300 GeV (H)	$pp \to HA \to 4\tau$	
40 MeV~200 GeV	$e^+e^- ightarrow \gamma a ightarrow 3\gamma$	
10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K \rightarrow \mu\nu Z', \ \mu e \rightarrow \mu e Z'$	

Supersymmetry (SUSY)

Muon g-2 anomaly + SUSY (theory) **Teppei Kitahara** (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

SUSY = symmetry between fermion and boson

https://ific.uv.es/sct/physics_susy

Supersymmetric (SUSY) Interpretation

Crucial: SM owns one Higgs-doublet, while the minimal SUSY requires two Higgs/Higgsino-doublet \leftarrow Holomorphy of superpotential and gauge anomaly cancelation

So, the electroweak symmetry breaking must occur by two Higgs VEVs

$$\begin{pmatrix} H^+ \\ v + H^0 \end{pmatrix}_{\rm SM}$$

Then, $\tan \beta \equiv v_u / v_d$ is a free parameter, where

Muon g-2 anomaly + SUSY (theory) **Teppei Kitahara** (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

$$\begin{pmatrix} H_u^+ \\ v_u + H_u^0 \end{pmatrix}, \begin{pmatrix} v_d + H_d^0 \\ H^- \end{pmatrix}_{\text{SUSY}}$$

+ two Higgsino doublets

ere
$$v_{\rm SM} = \sqrt{v_u^2 + v_d^2}$$

"tan β enhancement"

Muon g-2 anomaly + SUSY (theory) **Teppei Kitahara** (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

Supersymmetric Interpretation

- Four types of one-loop diagrams are responsible to explain the anomaly:
 - 1, WHL scenario 2, BLR scenario

These diagrams are proportional to $\tan \beta \sim \mathcal{O}(10) \rightarrow \text{effectively large } g_{\text{NP}} \rightarrow \text{TeV scale NP}$

1, WHL and 2, BLR \rightarrow next slide

3, BHL and 4, BHR are constrained from dark matter direct detection (XENON1T experiment) [Endo, Hamaguchi, Iwamoto, Yanagi 1704.05287; Baum, Carena, Shah, Wagner 2104.03302]

Muon g-2 anomaly + SUSY (theory) **Teppei Kitahara** (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Endo, Hamaguchi, Iwamoto, TK, 2104.03217]

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

 $\widetilde{W}^{\pm}-\widetilde{H}^{\pm}$

[Endo, Hamaguchi, Iwamoto, TK, 2104.03217]

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Endo, Hamaguchi, Iwamoto, TK, 2104.03217]

2, Bino-LH-RH sleptons (BLR) scenario

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

Benchmark points

	BLR1	BLR3
M_1	100	150
$m_{ m L}=m_{ m R}$	150	200
aneta	5	5
μ	1323	1922
$m_{\widetilde{\mu}_1}$	154	202
$m_{\widetilde{\mu}_2}$	159	207
$m_{\widetilde au_1}$	113	159
$m_{\widetilde au_2}$	190	242
$m_{\widetilde{ u}_{\mu, au}}$	137	190
$m_{\widetilde{\chi}^0_1}$	99	150
$m_{\widetilde{\chi}^0_2}, m_{\widetilde{\chi}^0_3}, m_{\widetilde{\chi}^\pm_1}$	1323 - 1324	1922 - 1923
$a_\mu^{ m SUSY} imes 10^{10}$	27	17
$\Omega_{ m DM} h^2$	0.120	0.120
$\sigma_p^{\rm SI} \times 10^{47} \ [\rm cm^2]$	1.7	0.8
$\mu_{\gamma\gamma}$	1.01	1.01

XENONnT (DM direct detection) can probe this scenario

Slepton search via photon collision

Novel idea: slepton can be probed via photon collision in the LHC $pp \to \gamma \gamma pp \to \tilde{\ell} \tilde{\ell}^* \to (\ell \tilde{\chi}_1^0) (\bar{\ell} \tilde{\chi}_1^0)$

nearly on-shell photons

1, measure outgoing proton *E_p* by forward detector

2, measure lepton fourmomentum

3, reconstruct missing momentum four-vector

Proton soft survival probability is crucial

Slightly optimistic?

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

Statement: When all charged-sleptons are measured in the ILC500, one can reconstruct SUSY contribution to the muon g-2 [Endo, Hamaguchi, Iwamoto, TK, Moroi, 1310.4496] → see NEXT talk by Kawada-san

Note: $\tilde{g}_{1,L/R}$ would deviate at O(1-10)% from U(1)_Y gauge coupling due to several SUSY contributions

> Muon g-2 anomaly + SUSY (theory) **Teppei Kitahara** (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

Reconstruction a_{μ}^{SUSY} from ILC measurements

Based on ~ SPS1a' model-point study [Berggren et al., 0902.2434]

	parameters	processes	precisions
	$m_{ ilde{\mu}_{ m L}},m_{ ilde{\mu}_{ m R}},m_{ ilde{\chi}_1^0}$	$e^+e^- \to \tilde{\mu}^+\tilde{\mu}^-$	O(0.1)%
\bigcirc	$\tilde{\mu}_{\rm L}$ - $\tilde{\mu}_{\rm R}$ mixing	$e^+e^- \rightarrow \tilde{\tau}^+\tilde{\tau}^-$	12%
	$ ilde{g}_{1,\mathrm{L}}, ilde{g}_{1,\mathrm{R}}$	$e^+e^- \rightarrow \tilde{e}^+\tilde{e}^-$	O(1)%
	$a_{\mu}^{ m reconst.}$		13%
	$a_{\mu}^{\mathrm{therror}}$	if $m_{\tilde{\chi}_1^{\pm}} > 1 \mathrm{TeV}$	< 4%

UV model

- For muon g-2 anomaly, light slepton and light electroweakino are required < O(500)GeV
- Under the GUT relation $M_1: M_2: M_3 \simeq 1: 2: 6$, a large portion of the parameter space is constrained by direct gluino searches
 - Several theories can predict $M_1, M_2 \ll M_3$
 - a UV completion: mirage/ mixed modulus-anomaly mediation [Jeong, Kawamura, Park, 2106.04238]

 $M_1: M_2: M_3 \simeq (1 + 0.83\alpha): (2 + 0.25\alpha): (6 - 2.25\alpha)$

 α is a rational number determined by underlying string compactification

 $\alpha = -2 \rightarrow M_1 : M_2 : M_3 \simeq 1 : -2 : -16$

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

- Fermilab Muon g-2 collaboration confirmed the BNL muon g-2 data (4.2 σ anomaly).
- The standard model prediction is still controversial. Other lattice group results / Belle II data / MUonE data will shed light on the HVP contributions.
- Several TeV—MeV scale new physics models have been suggested by muon g-2 anomaly.
- SUSY models can still explain the muon g-2 anomaly
- **ILC can probe SUSY** (motivated by muon g-2 anomaly) \blacklozenge
 - ILC 500GeV \rightarrow Bino-LH-RH sleptons (BLR) scenario
 - ILC 1TeV \rightarrow Wino-Higgsino-LH slepton (WHL) scenario
 - ILC can reconstruct SUSY contributions to muon g-2

Muon g-2 anomaly + SUSY (theory) **Teppei Kitahara** (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

Summary

Backup

White paper average

Contribution

Experiment (E821)

HVP LO (e^+e^-) HVP NLO (e^+e^-) HVP NNLO (e^+e^-) HVP LO (lattice, *udsc*) HLbL (phenomenology) HLbL NLO (phenomenology) HLbL (lattice, *uds*) HLbL (phenomenology + lattice)

QED

Electroweak HVP $(e^+e^-, LO + NLO + NNLO)$ HLbL (phenomenology + lattice + NLO) Total SM Value

Difference: $\Delta a_{\mu} := a_{\mu}^{\exp} - a_{\mu}^{SM}$

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Muon g-2 theory initiative, 2006.04822]

Value $\times 10^{11}$ 116 592 089(63) **BNL** value 6931(40) -98.3(7)12.4(1)7116(184) \leftarrow this error shrinks 92(19) 2(1)79(35) 90(17) 116 584 718.931(104) 5-loop! 153.6(1.0) 6845(40) 92(18) 116 591 810(43) 279(76) 3.7σ tension in the end

[Lehner, KEK-PH2021]

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

Status of HVP

 2.1σ tension between data-driven value (WP20) and **BMW20**

New physics interpretations

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Refs: Athron et al, 2104.03691; Buen-Abad et al, 2104.03267; Krnjaic et al, 1902.07715; Dermisek et al, 2103.05645]

mass range	probe	
200~500 GeV	$ \begin{aligned} \widetilde{\chi}_{2}^{0} \widetilde{\chi}_{1}^{\pm} &\to \left(h \widetilde{\chi}_{1}^{0} \right) \left(W^{\pm} \widetilde{\chi}_{1}^{0} \right) \\ pp &\to \gamma \gamma \to \widetilde{\ell} \widetilde{\ell}^{*} \end{aligned} $	
1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$	
100 GeV \sim 1 TeV	$\begin{array}{c} h \rightarrow \mu^{+} \mu^{-} \\ Z \rightarrow \mu^{+} \mu^{-} \end{array}$	
10~100 GeV (A), 150~300 GeV (H)	$Z \to \tau^+ \tau^-$ $pp \to HA \to 4\tau$	
40 MeV~200 GeV	$e^+e^- \rightarrow \gamma a \rightarrow 3\gamma$	
10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K \rightarrow \mu\nu Z', \ \mu e \rightarrow \mu e Z'$	

Leptoquark models

Top quark are preferred for the muon g-2 anomaly because chirality enhancement is significant $m_t/m_\mu \sim 1600 \rightarrow \text{TeV}$ scale leptoquark is possible

LQ also gives radiative muon mass. No tuning leads to $m_{\rm LO} < 2.1$ TeV [2104.03691]

$Z \rightarrow \mu^+ \mu^-$ can be probed by **ILC**

Muon g-2 anomaly + SUSY (theory) **Teppei Kitahara** (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

- e.g., Low scale Pati-Salam model $(SU(4) \times SU(2)_L \times SU(2)_R)$ predicts TeV-scale leptoquark.
- The charm, strange (2nd gen.) couplings are strongly constrained by flavor precision constraints. [Kowalska, Sessolo, Yamamoto 1812.06851]

New physics interpretations

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Refs: Athron et al, 2104.03691; Buen-Abad et al, 2104.03267; Krnjaic et al, 1902.07715; Dermisek et al, 2103.05645]

mass range	probe	
200~500 GeV	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \to \left(h\widetilde{\chi}_{1}^{0}\right)\left(W^{\pm}\widetilde{\chi}_{1}^{0}\right)$ $pp \to \gamma\gamma \to \widetilde{\ell}\widetilde{\ell}^{*}$	
1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$	
100 GeV \sim 1 TeV	$\begin{array}{c} h \rightarrow \mu^{+} \mu^{-} \\ Z \rightarrow \mu^{+} \mu^{-} \end{array}$	
 10~100 GeV (A),	$Z \to \tau^+ \tau^-$	
150~300 GeV (H)	$pp \to HA \to 4\tau$	
40 MeV~200 GeV	$e^+e^- \to \gamma a \to 3\gamma$	
10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K \rightarrow \mu\nu Z', \ \mu e \rightarrow \mu e Z'$	

Vector-like lepton

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

- Enhancement occurs from large Yukawa coupling and large chirality flip
- $m_{\rm VL}$ < 100GeV was excluded by LHC Run 1. Run 2
- would exclude $m_{\rm VL} \lesssim \mathcal{O}(500)$ GeV region [ATLAS 2008.07949]
- There is a robust correlation with $h \rightarrow \mu^+ \mu^-$ (SM
- is $\mu^{\mu^+\mu^-} = 1$ in the left figure) [Endo, Mishima 2005.03933]
- ILC has ~ 10% sensitivity for $\mu^{\mu^+\mu^-}$ measurement

Novel theoretical finding: Violation of Wilsonian (1/2)

- from "total derivative phenomenon"

 - mass spectrum! The reason is that the loop function is "total derivative"

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Arkani-Hamed, Harigaya, 2106.01373]

Using a vector-like lepton model, the authors discover "violation of Wilsonian naturalness" following

Two vector-like leptons are introduced: SU(2)_L doublet L and singlet S (motivation: $h\mu^+\mu^-$ is SM-like)

Dimension-six one-loop contributions are canceled out without symmetry reason, independently of

Novel theoretical finding: Violation of Wilsonian (2/2)

Excluded by LHC search

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Arkani-Hamed, Harigaya, 2106.01373]

$$Z \to \mu^+ \mu^-$$

$$W \to \mu \bar{\nu}$$

 $\tau \to \mu \nu \bar{\nu}$

Excluded by electroweak fit

doublet vector-like lepton mass

New physics interpretations

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Refs: Athron et al, 2104.03691; Buen-Abad et al, 2104.03267; Krnjaic et al, 1902.07715; Dermisek et al, 2103.05645]

mass range	probe	
200~500 GeV	$\widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} \to \left(h\widetilde{\chi}_{1}^{0}\right)\left(W^{\pm}\widetilde{\chi}_{1}^{0}\right)$ $pp \to \gamma\gamma \to \widetilde{\ell}\widetilde{\ell}^{*}$	
1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$	
100 GeV \sim 1 TeV	$\begin{array}{c} h \rightarrow \mu^{+} \mu^{-} \\ Z \rightarrow \mu^{+} \mu^{-} \end{array}$	
10~100 GeV (A),	$Z \to \tau^+ \tau^-$	
150~300 GeV (H)	$pp \to HA \to 4\tau$	
40 MeV~200 GeV	$e^+e^- \to \gamma a \to 3\gamma$	
10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K \rightarrow \mu\nu Z', \ \mu e \rightarrow \mu e Z'$	

Leptophilic scalar extensions

•	Type-X 2HDM is a leptophilic scalar ex	tens	sic
•	Two-loop Barr-Zee diagram is proportic	onal	t
•	Bounds from $B_s \rightarrow \mu^+ \mu^-, Z \rightarrow \tau^+ \tau^-, \tau^-$	$\tau \rightarrow$	•
•	Still allowed: [Athron et al, 2104.03691]		
	$20 \text{ GeV} \lesssim m_A \lesssim 40 \text{ GeV},$ $150 \text{ GeV} \lesssim m_{H,H^{\pm}} \lesssim 250 \text{ GeV}$	Multiplier (ξ_{ϕ}^{ℓ})	100 70 50 40 30 20
•	ILC250 can probe via	Coupling I	10
	$e^+e^- \rightarrow \tau^+\tau^- A \rightarrow \tau^+\tau^+\tau^-\tau^-$		7 5
	collimated $\mu^+\mu^-$ (from τ)/ 4τ search		

Muon g-2 anomaly + SUSY (theory) Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

- on model
- to $(\tan\beta)^2$
- $\mu\nu\bar{\nu}$, EW fit, and LHC

2HDM + A

Type-X 2HDM

New physics interpretations

NP type	diagrams	mass range	probe
Supersymmtery	Ĩĩ , Ŵ, Đ, Ĥ,	200~500 GeV	$\begin{split} \widetilde{\chi}_{2}^{0}\widetilde{\chi}_{1}^{\pm} &\to \left(h\widetilde{\chi}_{1}^{0}\right)\left(W^{\pm}\widetilde{\chi}_{1}^{0}\right)\\ pp &\to \gamma\gamma \to \widetilde{\ell}\widetilde{\ell}^{*} \end{split}$
Leptoquark	LQ b, t	1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$
Vector-like lepton	بر ۲.۶.۷ ۲۰۰۰ ۲۰۰۰	100 GeV \sim 1 TeV	$\begin{array}{c} h \rightarrow \mu^{+} \mu^{-} \\ Z \rightarrow \mu^{+} \mu^{-} \end{array}$
Scalar extensions	T, [‡]	10~100 GeV (A), 150~300 GeV (H)	$Z \to \tau^+ \tau^-$ $pp \to HA \to 4\tau$
Axion-like particle		40 MeV~200 GeV	$e^+e^- \rightarrow \gamma a \rightarrow 3\gamma$
U(1) Lμ-Lτ		10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K \rightarrow \mu\nu Z', \ \mu e \rightarrow \mu e Z'$

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Refs: Athron et al, 2104.03691; Buen-Abad et al, 2104.03267; Krnjaic et al, 1902.07715; Dermisek et al, 2103.05645]

Axion-like particle

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

New physics interpretations

NP type	diagrams	mass range	probe
Supersymmtery	Ĩn , Ŵ. B., H.,	200~500 GeV	$\begin{split} \widetilde{\chi}_{2}^{0} \widetilde{\chi}_{1}^{\pm} &\to \left(h \widetilde{\chi}_{1}^{0}\right) \left(W^{\pm} \widetilde{\chi}_{1}^{0}\right) \\ pp &\to \gamma \gamma \to \widetilde{\ell} \widetilde{\ell}^{*} \end{split}$
Leptoquark	LQ b, t	1.5~2.1 TeV	$pp \to LQ\overline{LQ}$ $Z \to \mu^+\mu^-$
Vector-like lepton	W.Z.W VL	100 GeV \sim 1 TeV	$\begin{array}{c} h \rightarrow \mu^{+} \mu^{-} \\ Z \rightarrow \mu^{+} \mu^{-} \end{array}$
Scalar extensions	A T A	10~100 GeV (A), 150~300 GeV (H)	$Z \to \tau^+ \tau^-$ $pp \to HA \to 4\tau$
 Axion-like particle		40 MeV~200 GeV	$e^+e^- \to \gamma a \to 3\gamma$
U(1) Lμ-Lτ	z' ~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	10~200 MeV	$e^+e^- \rightarrow \mu^+\mu^- Z'$ $K \rightarrow \mu\nu Z', \ \mu e \rightarrow \mu e Z'$

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Refs: Athron et al, 2104.03691; Buen-Abad et al, 2104.03267; Krnjaic et al, 1902.07715; Dermisek et al, 2103.05645]

Excluded: dark-photon model

Dark-photon (hidden-photon) model: SM + massive U(1) gauge

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

$$\frac{1}{2}m_V^2 V_\mu V^\mu + \frac{1}{2}\frac{\epsilon}{\cos\theta_W}F_{\mu\nu}^V B^{\mu\nu}$$

Dark-photon model is very simple and motivative.

Unfortunately, all parameter region that explains the muon g-2 anomaly has been excluded.

$U(1)L_{\mu} - L_{\tau}$ gauge symmetry (vector muonic force)

Electron coupling/mode gives severe bounds

- No electron direct interaction, and bounds are week
 - gauge anomaly-free

Motivative: neutrino mass, Leptogenesis [e.g., Asai, Hamaguchi, Nagata, Tseng 2005.01039]

$$\mathcal{L} = -\frac{1}{4} Z_{\alpha\beta}' Z^{\prime\alpha\beta} + \frac{1}{2} m_{Z'}^2 Z_{\alpha}' Z^{\prime\alpha}$$

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

 $L_{\mu} - L_{\tau}$ U(1) gauge symmetry (muon number and tau number are gauged including neutrino)

 $+g'Z'_{\alpha}\left(\bar{\ell}_{2}\gamma^{\alpha}\ell_{2}-\bar{\ell}_{3}\gamma^{\alpha}\ell_{3}+\bar{\mu}_{R}\gamma^{\alpha}\mu_{R}-\bar{\tau}_{R}\gamma^{\alpha}\tau_{R}\right)$

$U(1)L_{\mu} - L_{\tau}$ gauge symmetry

neutrino-trident bound

[Krnjaic, Marques-Tavares, Redigolo, Tobioka 1902.07715]

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

		1
	14	
1		
		1
		- 1
		1
	<u>†</u>	1
		- 1
		- 1
		- 1
	í	
		-
		- 1
		- 1
		- 1
1	/	
1		
1		
	1	

MUonE experiment vs. muonic force

MUonE experiment could probe $U(1)_{L_{\mu}} - L_{\tau}$ model completely

Muon g-2 anomaly + SUSY (theory)

Teppei Kitahara (Nagoya University): The 75th General Meeting of ILC Physics Subgroup, December 15, 2021, online talk

[Asai, Hamaguchi, Nagata, Tseng, Wada 2109.10093]

