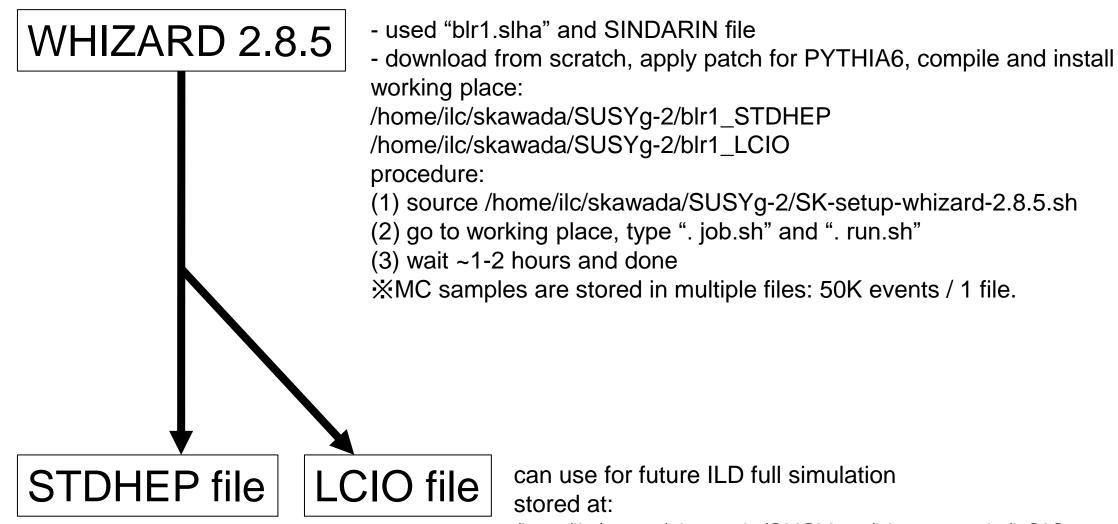
Status Report: Muon g-2 anomaly + SUSY at the ILC

Shin-ichi Kawada (KEK)


Muon g-2 + SUSY: status report

- Produce SUSY MC samples at ILC500 with WHIZARD2.8.5
 - The files "blr1.slha" and SINDARIN files prepared by theorists, but beam energy spread was not included
 - Worked to include ISR / beam energy spread by implementing CIRCE2
 - Included PYTHIA6 and TAUOLA as well
 - Calculated cross-section for each SUSY process, and generated MC events
- Run detector simulation: this time DELPHES used
- Analysis just started

	BLR1	BLR2	BLR3	BLR4
M_1	100	100	150	150
$m_{\rm L} = m_{\rm R}$	150	150	200	200
aneta	5	10	5	10
μ	1323	678	1922	973
$m_{\widetilde{\mu}_1}$	154	154	202	202
$m_{\widetilde{\mu}_2}$	159	159	207	208
$m_{\widetilde{ au}_1}$	113	113	159	158
$m_{\widetilde{ au}_2}$	190	191	242	243
$m_{\widetilde{ u}_{\mu, au}}$	137	136	190	190
$m_{\widetilde{\chi}_1^0}$	99	99	150	149
$m_{\widetilde{\chi}^0_2}, m_{\widetilde{\chi}^0_3}, m_{\widetilde{\chi}^\pm_1}$	1323–1324	678-680	1922 - 1923	973–975
$a_{\mu}^{\rm SUSY} \times 10^{10}$	27	27	17	17
$\Omega_{ m DM} h^2$	0.120	0.120	0.120	0.120
$\sigma_p^{\rm SI} \times 10^{47} \ [\rm cm^2]$	1.7	3.7	0.8	1.9
$\mu_{\gamma\gamma}$	1.01	1.01	1.01	1.01

Units in GeV So far, I am only working with BLR1 parametrization.

Workflow (1)

/hsm/ilc/users/skawada/SUSYg-2/blr1_sample/LCIO

Workflow (2)

STDHEP file

necessary for DELPHES simulation (LCIO is not supported as the input for DELPHES) stored at: /hsm/ilc/users/skawada/SUSYg-2/blr1_sample/STDHEP

DELPHES + DELPHES2LCIO

- used ILC generic card for detector
- used DELPHES2LCIO for LCIO output working place:

/home/ilc/skawada/SUSYg-2/blr1_DEL procedure:

(1) source /home/ilc/skawada/DJ-delphes-setup.sh

(2) go to working place and type ". run.sh"

(3) type ". check.sh", failed job must be recovered by hand ※I don't know why several jobs at KEKCC batch server fail.

The failure rate is ~10% even jobs controlled by one script. %The EventSummary collection will be created at the end of each file.

DELPHES result (LCIO file)

Workflow (3)

DELPHES result (LCIO file) contains DELPHES simulation result event header information is lost stored at:

/hsm/ilc/users/skawada/SUSYg-2/blr1_sample/DEL

MARLIN

- used to recover (or restore) event header information
- recovered cross-section, beam polarization, E_{CM} (500 GeV), process ID/name

- remove unnecessary EventSummary collection working place:

/home/ilc/skawada/SUSYg-2/analysis/modification

procedure:

- (1) source /home/ilc/skawada/init_ilcsoft_v020202.sh
- (2) source /home/ilc/skawada/SUSYg-2/analysis/use.sh
- (3) go to working place and type ". run_modify.sh"
- (4) wait ~10 minutes and done
- Need to assume each sample has exactly 50K + EventSummary

DELPHES result (LCIO file) + event header info

contains DELPHES simulation result and event header info stored at:

/home/ilc/skawada/SUSYg-2/analysis/DEL_sample

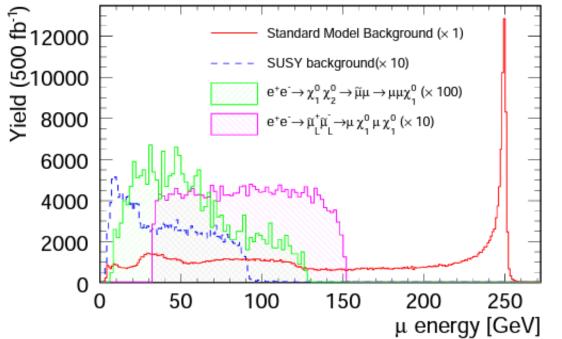
Produced events (1)

Process $e^+e^- \rightarrow$	Pol (e-, e+) (%)	Xsec (fb)	N = L*Xsec (Assume L = 4 ab ⁻¹)	N = L*Xsec (Assume L = 1.6 ab ⁻¹)	N_generated	process ID
$\widetilde{e_L}^+ \widetilde{e_L}^-$	-80/+30	28.7091 +- 0.0012	114836	45935	500K	1
$\widetilde{e_L}^+ \widetilde{e_L}^-$	+80/-30	22.30497 +- 0.00071	89220	35688	500K	2
$\widetilde{e_R}^+ \widetilde{e_R}^-$	-80/+30	53.5626 +- 0.0019	214250	85700	1M	3
$\widetilde{e_R}^+ \widetilde{e_R}^-$	+80/-30	54.6909 +- 0.022	218764	87505	1M	4
$\widetilde{\mu_L}^+ \widetilde{\mu_L}^-$	-80/+30	99.1388 +- 0.0079	396555	158622	1.5M	5
$\widetilde{\mu_L}^+ \widetilde{\mu_L}^-$	+80/-30	25.9426 +- 0.0021	103770	41508	500K	6
$\widetilde{\mu_R}^+\widetilde{\mu_R}^-$	-80/+30	26.9622 +- 0.0021	107849	43140	500K	7
$\widetilde{\mu_R}^+\widetilde{\mu_R}^-$	+80/-30	92.4999 +- 0.0072	370000	148000	1.5M	8

1.6 ab⁻¹ is the integrated luminosity of ILC500 with -80/+30 and +80/-30

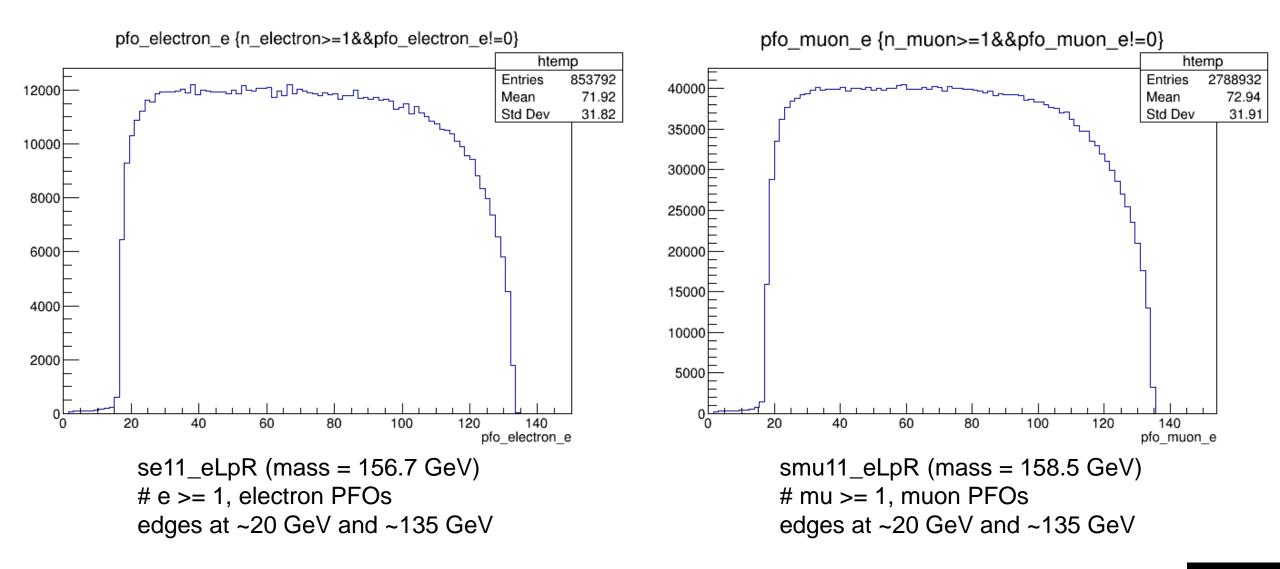
Produced events (2)

$\frac{\text{Process}}{e^+e^-} \rightarrow$	Pol (e-, e+) (%)	Xsec (fb)	N = L*Xsec (Assume L = 4 ab ⁻¹)	N = L*Xsec (Assume L = 1.6 ab ⁻¹)	N_generated	process ID
$\widetilde{\tau_1}^+ \widetilde{\tau_1}^-$	-80/+30	92.9890 +- 0.0063	371956	148782	1.5M	9
$\widetilde{ au_1}^+ \widetilde{ au_1}^-$	+80/-30	86.6444 +- 0.0059	346578	138631	1.5M	10
$\widetilde{\tau_2}^+ \widetilde{\tau_2}^-$	-80/+30	29.0410 +- 0.0033	116164	46466	500K	11
$\widetilde{\tau_2}^+ \widetilde{\tau_2}^-$	+80/-30	26.3214 +- 0.0029	105286	42114	500K	12
$\widetilde{\tau_1}^+ \widetilde{\tau_2}^-$	-80/+30	8.18989 +- 0.00062	32760	13104	200K	13
$\widetilde{\tau_1}^+ \widetilde{\tau_2}^-$	+80/-30	6.48573 +- 0.00050	25943	10377	200K	14
$\widetilde{ au_2}^+ \widetilde{ au_1}^-$	-80/+30	8.19128 +- 0.00062	32765	13106	200K	15
$\widetilde{\tau_2}^+ \widetilde{\tau_1}^-$	+80/-30	6.48553 +- 0.00050	25942	10377	200K	16

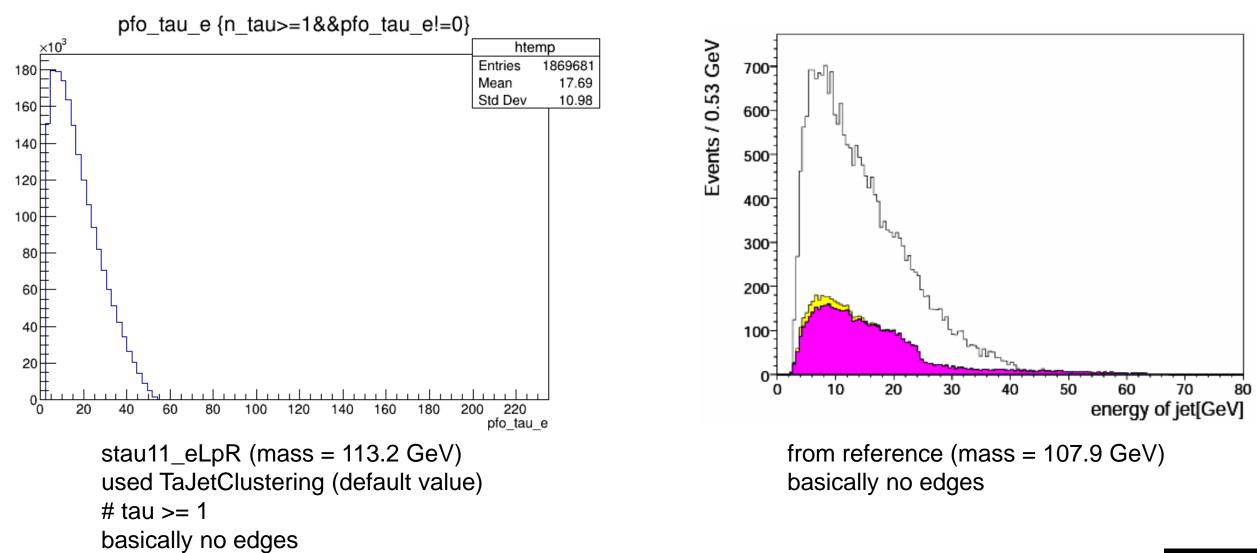

1.6 ab⁻¹ is the integrated luminosity of ILC500 with -80/+30 and +80/-30

Potential problem

- The spin information is not stored in stau events
 - This might affect to the decay products of tau
 - It is OK for SM world (e.g.: Keita's study)


Energy plot

- Since selectron/smuon decay is two-body decay, the energy distribution of decay products have "edges".
- Stau is technically two-body decay as well, but the produced tau also decays and makes everything complicated.



"edges" at ~30 GeV and ~150 GeV in smuon events (magenta)

Selectron/Smuon events

Stau events

Mass fit

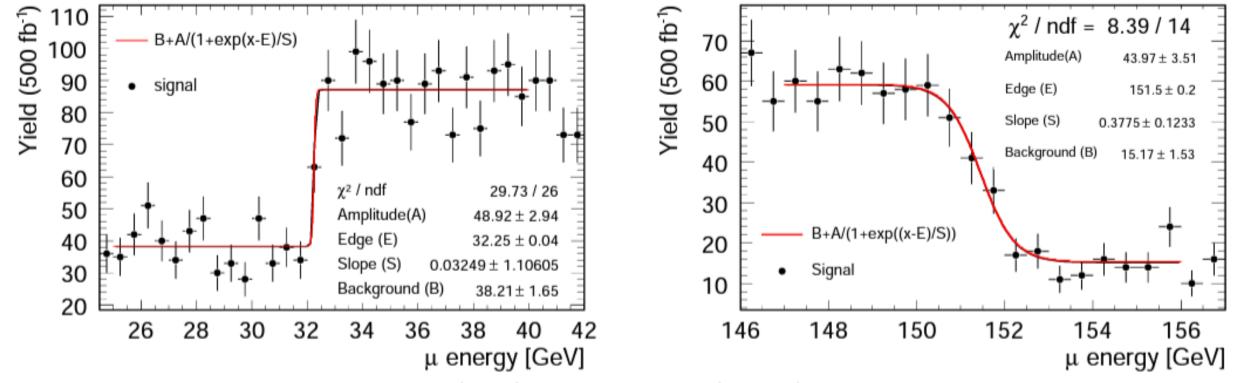


Figure 3: The fit to the lower (left) and upper (right) edges of the P_{μ} distribution

Next steps

- The analysis
 - mass fit
 - add backgrounds

BACKUP

Problems / Questions / Next Step (1)

- When I include Pythia, it crushed.
 - Up to Xsec calculation works, but not for event generation.
- I set Tauola is on, but it keeps PDG +-15 (no decay of tau) in the event.
- Solved: These are solved when I put the sentence "\$ps_PYTHIA_PYGIVE = "MDCY(C1000022,1)=0"" in sindarlin file explicitly (written in Whizard manual).

Problems / Questions / Next Step (2)

- When running TAUOLA, I got the following message.
 - Subroutine fill_pyjets_spin_data: tau helicity information is not set, though polarized tau decay was requested. Most likely, the SINDARIN file does not include polarized for particles and/or not ?polarized_events=true
 - Still no tau decay exist in tau events. Maybe due to this message?

• **Solved:** Put the sentence "?polarized_events=true" in global.

Problems / Questions / Next Step (3)

- Found ~4[7]% events have stable tau (no daughters of tau) in stau1+stau2-[stau1+stau1-] event.
- The biggest difference with Keita's study is with or without SUSY contribution.

- Solved: need to apply patch for PYTHIA6 (many thanks to Mikael Berggren (DESY))
 - This needs: fresh download of Whizard2.8.5, apply patch to PYTHIA6, compile and install. The Whizard2.8.5 which is already installed in KEKCC is not enough to handle stau BSM world.

Problems / Questions / Next Step (4)

- How to do detector simulation?
 - DELPHES? SGV? ILD full simulation?
 - In any case, I need to learn how to run the jobs. Started to learn DELPHES first.
 - Sometimes DELPHES does not work ---> Solved: some version difference (many thanks to Daniel), input file was too large. I will split samples every 50K events.