

WG2 SRF: WP3 Crab Cavities Design Review Workshop #1

Peter McIntosh

UKRI-STFC Daresbury Laboratory

8th December 2021

Agenda for Today (GMT)

15:00	Introduction and Remit for the Workshop	Peter McIntosh (STFC)	5 min	
15:05	Beam Aperture Specification Discussion	Peter McIntosh (STFC) Toshiyuki Okugi (KEK)	10 min	
Cavity Design Updates				
15:15	Elliptical/Racetrack	Graeme Burt (Lancaster University)	15 + 5 min	
15:35	RF Dipole (RFD)	Suba De Silva/Jean Delayen (ODU/JLab)	15 + 5 min	
15:55	Double Quarter Wave (DQW)	Silvia Verdu Andres (CERN)	15 + 5 min	
16:15	Wide Open Waveguide (WOW)	Binping Xiao (BNL)	15 + 5 min	
16:35	Quasi-waveguide Multicell Resonator (QMiR)	Andrei Lunin (FNAL)	15 + 5 min	
16:55	Specifications Review	Peter McIntosh (STFC)	5 min	
17:00	Preparations for 2 nd Workshop (22 nd Jun 2022)	Peter McIntosh (STFC)	5 min	

Workshop Remit

- For WP3 teams to identify progress made with CC designs.
- Identify issues which exist regarding specifications as defined (v10).
- Resolve outstanding issues from ILCX21 in Nov:
 - Beam Aperture
 - Operational robustness Epk, Bpk or Vt?
 - CW vs Pulsed operation
 - Tweak specifications as necessary?
- Agree the cavity parameters to define for future reviews trigger process today.

Beam Aperture Specification (ILCX21 Discussion)

- ILC BDS team identified 20 mm minimum beam aperture requirements for CC's at 14 m from the IP.
- Query relating to synchrotron photon flux and potential impact needing aperture to be increased – G Burt experience from ILC TDR.
- Is the 20mm restriction really valid if only a small proportion of the cavity geometry (<30%) is limited A Lunin for the QMiR CC design.
- Okugi-san identified that 20mm aperture is minimum expectation, ideally it should be larger, up to the interfacing magnet aperture dimension (52mm and 84mm).
- The larger the CC aperture (especially horizontally), the more beneficial it will be for the collimation systems generates more secondary particles.
- BDS team would therefore prefer >20mm aperture for the CC's.
- Analysis underway to determine SR impact, but do not expect it to be significant for >20 mm.

Can we please discuss and agree a solution!

CC Design Updates

- Elliptical/Racetrack
- RF Dipole (RFD)
- Double Quarter Wave (DQW)
- Wide Open Waveguide (WOW)
- Quasi-waveguide Multicell Resonator (QMiR)

G Burt (Lancaster U) S De Silva/J Delayen (ODU/Jlab) S Verdu Andres (CERN) B Xiao (BNL) A Lunin (FNAL)

Specifications Review

- Operational Robustness:
 - Ep, Bp or Vt consistent for all CC geometries?
- CW or pulsed:
 - Preference is for CW, no LFD issues, simpler optimisation process and tuning.
- Anything else?

CC Design Parameters

- Need to standardise the CC parameters for each design.
- Proposed start for list to agree as baseline for future comparative assessment.
- Please provide feedback, which I will collate and refine the list accordingly.

Cavity Properties		
Operating frequency [GHz]	No. of cavities	
SOM [GHz]	Cavity Length [mm]	
1 st Longitudinal HOM [GHz]	Cavity Diameter [mm]	
1 st Transverse HOM (GHz)	Minimum Aperture [mm]	
$E_{\rm p}/E_{\rm t}^*$	R _t /Q [Ω]	
$B_{\rm p}/E_{\rm t}^{*}$ [mT/(MV/m)]	FPC Q _L	
$B_{\rm p}/E_{\rm p}$ [mT/(MV/m)]	Bandwidth [kHz]	
G [Ω]	Cavity Input Power [kW]	
<i>R/Q</i> [Ω]	Horizontal Kick Factor k _x [V/pC/m]	
$R_{\rm t}R_{\rm s}$ [Ω^2]	Vertical Kick Factor k _y [V/pC/m]	
V _t per cavity [MV]	Stored Energy W [J]	
E _p [MV/m]	HOM impedances	
<i>B</i> _p [mT]	Anything else?	
Total V _t [MV]		

Preparations for 2nd Design Workshop (22nd June 2022)

- Assess and compare CC EM designs, not likely finally optimised:
 - Cavity,
 - HOMs,
 - Couplers,
 - Multipacting,
 - Tuning.
- Clarifying then next steps to perform first CC down-selection on 27th Sept 2022:
 - All EM design aspects complete, including pressure stability and fabrication assessment.
 - Down-select 2 optimum CC designs for future prototype development (external review).
- Final CC down-selection, post-prototype validation at ~18-months later (Mar 2024).

MANY THANKS

Questions?

Science and Technology Facilities Counci