# **RF DIPOLE DESIGN UPDATE**

Suba De Silva

Center for Accelerator Science Old Dominion University

and Thomas Jefferson National Accelerator Facility





## Outline

- 1.3 GHz RF-Dipole cavity design
- Pole separation
- 1.3 GHz RFD crab cavity for ILC
- Fundamental power coupler
- Higher order modes and impedances
- Mechanical analysis
  - Stress analysis
  - Lorentz detuning
  - Pressure sensitivity
- Summary





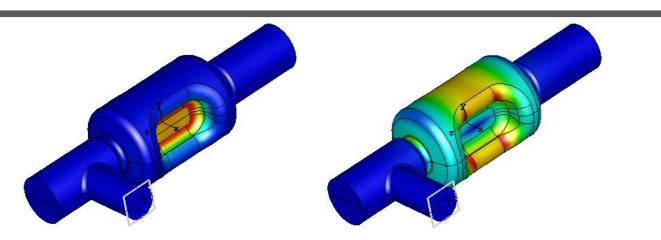
## **1.3 GHz RFD Cavity Design**

| Property                                                      | 1-cell              | 2-cell              |
|---------------------------------------------------------------|---------------------|---------------------|
| Operating frequency [GHz]                                     | 1.3                 | 1.3                 |
| SOM [GHz]                                                     | -                   | 1.188               |
| 1 <sup>st</sup> HOM [GHz]                                     | 2.069               | 1.932               |
|                                                               |                     |                     |
| $E_{\rm p}/E_{\rm t}^*$                                       | 4.45                | 4.57                |
| $B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]                           | 9.09                | 8.92                |
| $B_{\rm p}/E_{\rm p} [{\rm mT/(MV/m)}]$                       | 2.04                | 1.95                |
| G [Ω]                                                         | 142.5               | 147.3               |
| <i>R/Q</i> [Ω] (V <sup>2</sup> /P)                            | 182.2               | 370.7               |
| $R_{\rm t}R_{\rm s}\left[\Omega^2\right]~({\rm V}^2/{\rm P})$ | 2.6×10 <sup>4</sup> | 5.5×10 <sup>4</sup> |
| Reference length V/E <sub>t</sub> = $\lambda/2$ (mm)          | 11.54               | 11.54               |
| V <sub>t</sub> [MV]                                           | 1.0                 | 2.0                 |
| E <sub>p</sub> [MV/m]                                         | 38.58               | 39.66               |
| <i>B</i> <sub>p</sub> [mT]                                    | 78.85               | 77.36               |
|                                                               |                     |                     |
| Pole separation, beam aperture (mm)                           | 36                  | 36                  |
| Cavity Length [mm]                                            | 172.32              | 297.4               |
| Cavity Diameter [mm]                                          | 128.6               | 114.5               |
| Pole Length [mm]                                              | 85                  | 85                  |





### 1.3 GHz RFD - 36 vs 30 mm Pole Separation


| Property                                             | 1-cell              | 2-cell                          |
|------------------------------------------------------|---------------------|---------------------------------|
| Operating frequency [GHz]                            | 1.3                 | 1.3                             |
| SOM [GHz]                                            | _                   | 1.188                           |
| 1 <sup>st</sup> HOM [GHz]                            | 2.069               | 1.932                           |
|                                                      |                     |                                 |
| $E_{\rm p}/E_{\rm t}^*$                              | <mark>4.45</mark>   | <mark>4.57</mark>               |
| $B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]                  | <mark>9.09</mark>   | <mark>8.92</mark>               |
| $B_{\rm p}/E_{\rm p} [{\rm mT/(MV/m)}]$              | 2.04                | 1.95                            |
| <i>G</i> [Ω]                                         | 142.5               | 147.3                           |
| <i>R</i> / <i>Q</i> [Ω] (V <sup>2</sup> /P)          | 182.2               | 370.7                           |
| $R_t R_s \left[\Omega^2\right] (V^2/P)$              | 2.6×10 <sup>4</sup> | <mark>5.5×10<sup>4</sup></mark> |
| Reference length V/E <sub>t</sub> = $\lambda/2$ (mm) | 11.54               | 11.54                           |
|                                                      |                     |                                 |
| V <sub>t</sub> [MV]                                  | 1.0                 | 2.0                             |
| E <sub>p</sub> [MV/m]                                | <mark>38.58</mark>  | <mark>39.66</mark>              |
| <i>B</i> <sub>ρ</sub> [mT]                           | <mark>78.85</mark>  | <mark>77.36</mark>              |
|                                                      |                     |                                 |
| Pole separation, beam aperture (mm)                  | 36                  | 36                              |
| Cavity Length [mm]                                   | 172.32              | 297.4                           |
| Cavity Diameter [mm]                                 | 128.6               | 114.5                           |
| Pole Length [mm]                                     | 85                  | 85                              |

| Property                                                | 1-cell                          | 2-cell                          |
|---------------------------------------------------------|---------------------------------|---------------------------------|
| Operating frequency [GHz]                               | 1.3                             | 1.3                             |
| SOM [GHz]                                               | -                               | 1.201                           |
| 1 <sup>st</sup> HOM [GHz]                               | 2.085                           | 1.960                           |
|                                                         |                                 |                                 |
| $E_{\rm p}/E_{\rm t}^*$                                 | <mark>3.84</mark>               | <mark>3.98</mark>               |
| $B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]                     | <mark>8.04</mark>               | <mark>7.94</mark>               |
| $B_{\rm p}/E_{\rm p}$ [mT/(MV/m)]                       | 2.10                            | 1.99                            |
| G [Ω]                                                   | 133.0                           | 137.2                           |
| <i>R</i> / <i>Q</i> [Ω] (V <sup>2</sup> /P)             | 280.2                           | 556.7                           |
| $R_{\rm t}R_{\rm s}$ [ $\Omega^2$ ] (V <sup>2</sup> /P) | <mark>3.7×10<sup>4</sup></mark> | <mark>7.6×10<sup>4</sup></mark> |
| Reference length V/E <sub>t</sub> = $\lambda/2$ (mm)    | 11.54                           | 11.54                           |
|                                                         |                                 |                                 |
| V <sub>t</sub> [MV]                                     | 1.0                             | 2.0                             |
| E <sub>p</sub> [MV/m]                                   | <mark>33.3</mark>               | <mark>34.54</mark>              |
| <i>B</i> <sub>p</sub> [mT]                              | <mark>69.7</mark>               | <mark>68.82</mark>              |
|                                                         |                                 |                                 |
| Pole separation, beam aperture (mm)                     | 30                              | 30                              |
| Cavity Length [mm]                                      | 172.32                          | 297.4                           |
| Cavity Diameter [mm]                                    | 107.4                           | 109.4                           |
| Pole Length [mm]                                        | 85                              | 85                              |

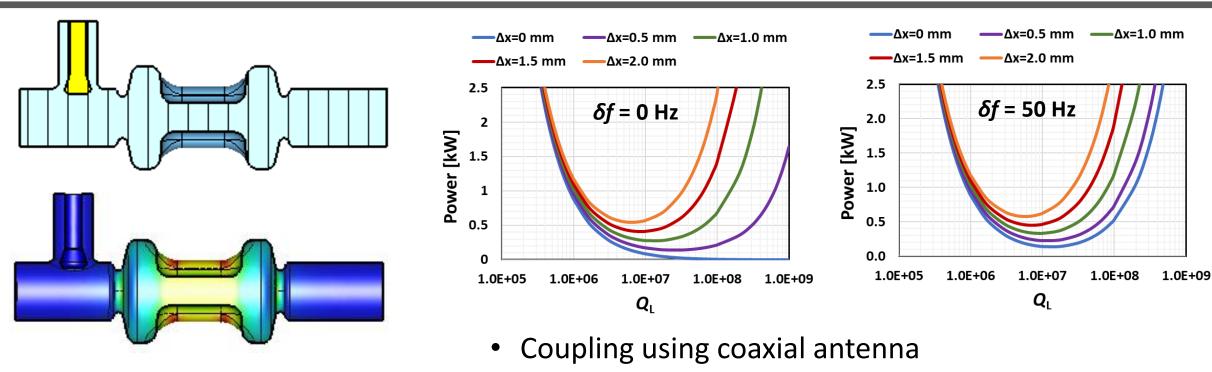
**D**MINION UNIVERSITY



## **1.3 GHz RFD Cavity**



- Pole separation 30 mm
  - Decided this pole separation from the past experience, to guarantee good high pressure rinsing
- Beam aperture 40 mm
  - For HOM mode propagation


|                                | 250 GeV | 1 TeV |
|--------------------------------|---------|-------|
| V <sub>t</sub> per cavity [MV] | 1.0     | 1.0   |
| Total V <sub>t</sub> [MV]      | 1.845   | 7.4   |
| Number of cavities             | 2       | 8     |

| Property                                                        | 1-c                 | ell     |
|-----------------------------------------------------------------|---------------------|---------|
| Operating frequency [GHz]                                       | 1.                  | 3       |
| SOM [GHz]                                                       | -                   |         |
| 1 <sup>st</sup> HOM [GHz]                                       | 2.08                |         |
|                                                                 |                     |         |
| $E_{\rm p}/E_{\rm t}^*$                                         | 3.8                 | 87      |
| $B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]                             | 8.02                |         |
| $B_{\rm p}/E_{\rm p}  [{\rm mT/(MV/m)}]$                        | 2.07                |         |
| G [Ω]                                                           | 133                 |         |
| <i>R/Q</i> [Ω] (V²/P)                                           | 285                 |         |
| $R_{\rm t}R_{\rm s} \left[\Omega^2\right]  ({\rm V}^2/{\rm P})$ | 3.8×10 <sup>4</sup> |         |
| Reference length V/E <sub>t</sub> = $\lambda/2$ (mm)            | 11.54               |         |
| V <sub>t</sub> [MV]                                             | 1.0                 | 1.15    |
| E <sub>p</sub> [MV/m]                                           | 34                  | 39      |
| <i>B</i> <sub>p</sub> [mT]                                      | 70                  | 80      |
| $P_{\rm diss}$ [W] ( $R_{\rm s}$ = 20 n $\Omega$ )              | 0.53                | 0.7     |
|                                                                 |                     |         |
| Pole separation (mm)                                            | 30                  |         |
| Beam aperture (mm)                                              | 4                   | 0       |
| Cavity Length [mm]                                              | 38                  | 30      |
| Cavity Diameter [mm]                                            | 129.0               |         |
| Pole Length [mm]                                                | 8                   | 5       |
|                                                                 | Cen                 | ter for |

**Accelerator Science** 

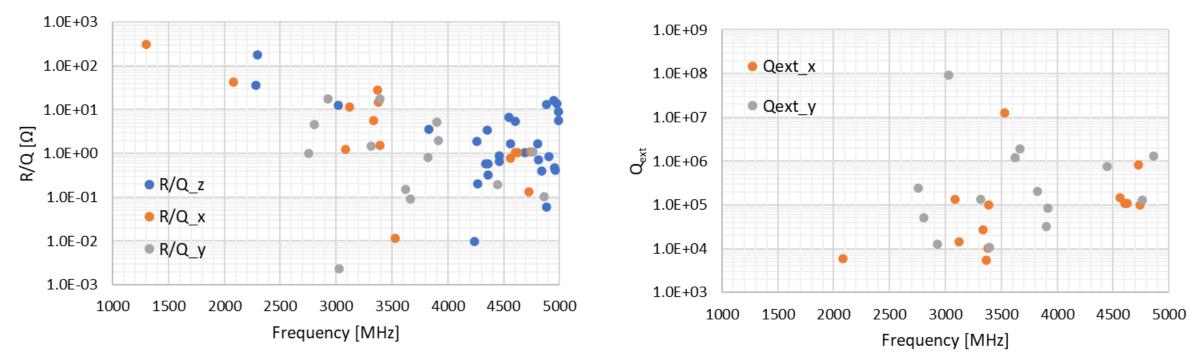


## **Fundamental Power Coupler**



Beam and cavity parameters:

- *I*<sub>b</sub> = 10 mA
- $R/Q = 285 \Omega (V^2/P)$
- *V*<sub>t</sub> = 1 MV

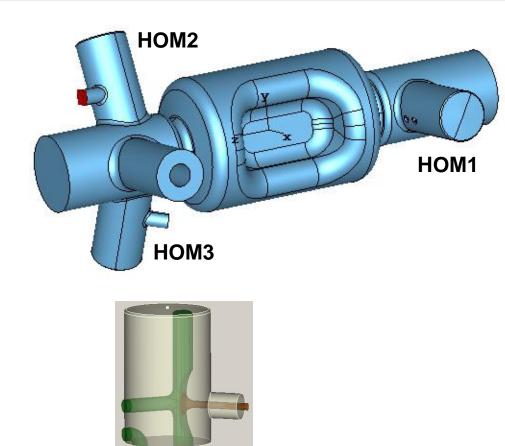

- Similar to LCLS II power coupler
- $Q_{\text{ext}} = 1.0 \times 10^7$  at  $\Delta x = 0.5$  mm  $\delta f = 50$  Hz
- RF power  $\approx 500 \text{ W}$
- RF heating at the Cu probe at 1 MV 65 mW





## **Higher Order Modes**

- Impedance threshold:  $Z_x = 48.8 \text{ M}\Omega/\text{m}$  and  $Z_y = 61.7 \text{ M}\Omega/\text{m}$
- Impedance threshold per cavity:  $Z_x = 5.42 \text{ M}\Omega/\text{m}$  and  $Z_y = 6.85 \text{ M}\Omega/\text{m}$  (9 cavities per side)




• For longitudinal modes need to evaluate loss factor for short range wakefields with  $\sigma_z = 0.3 \text{ mm}$ 

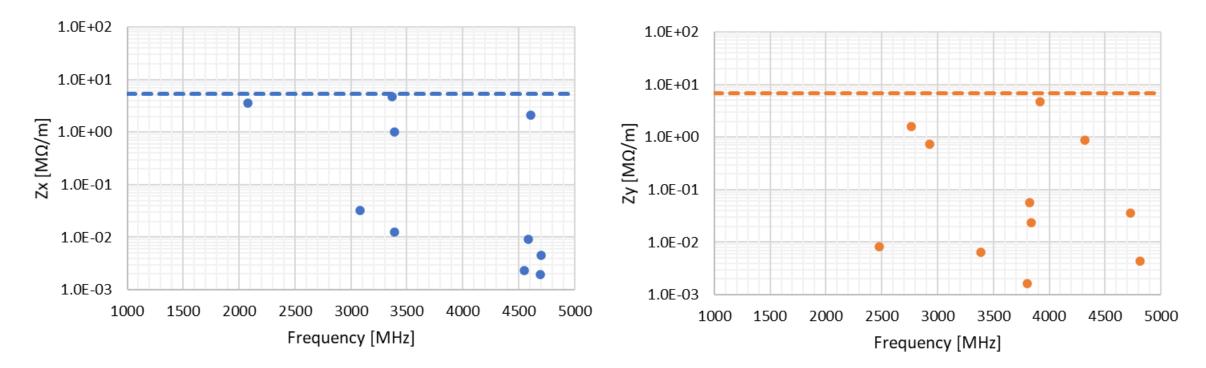




## **Higher Order Mode Damping**



TESLA type HOM coupler


- 1<sup>st</sup> concept: Damping using 3 TESLA type HOM couplers
  - Damper design used in the LCLS II cavities
  - All the couplers are placed on the beam pipe
- Planning to investigate damping using the scaled LHC-RFD HOM coupler
- Waveguide damping is also a possible option
- Final choice will be decided based on
  - RF properties including HOM power
  - Engineering and manufacturing complexity

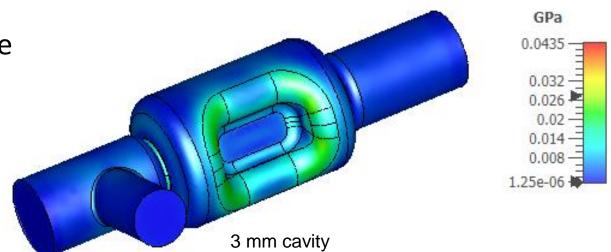


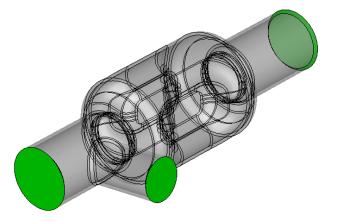


## **Higher Order Mode Damping**

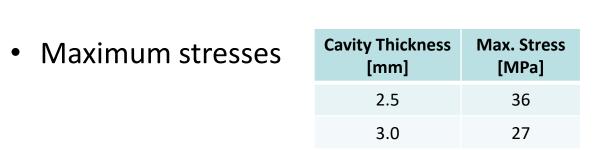
• Impedance threshold per cavity:  $Z_x = 5.42 \text{ M}\Omega/\text{m}$  and  $Z_v = 6.85 \text{ M}\Omega/\text{m}$ 




- Impedances calculated using circuit definition
- Need to evaluate up to ~ 20 GHz







### **Stress Analysis**

- Analysis at 2.2 atm external pressure
- Nb material properties at room temperature
  - (JLAB-TN-09-002 C100 Cryomodule Niobium Cavity Structural Analysis)
  - Young's modulus 82.7 GPa (1.2×10<sup>7</sup> psi)
  - Poisson's ratio 0.38
- Allowable stress < 43.5 MPa

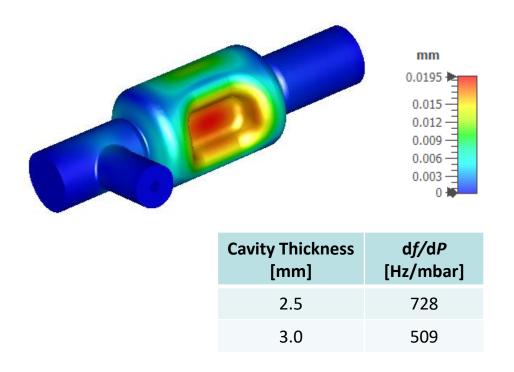




Boundary conditions

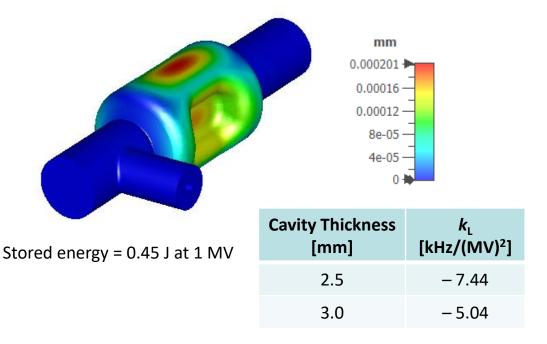


Initial analysis shows cavity doesn't require stiffening






## **Mechanical Analysis**

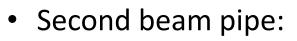

#### Pressure Sensitivity

- Nb material properties at room temperature
  - Young's modulus 82.7 GPa (1.2×10<sup>7</sup> psi)
  - Poisson's ratio 0.38
- Stiffening at poles can reduce pressure sensitivity

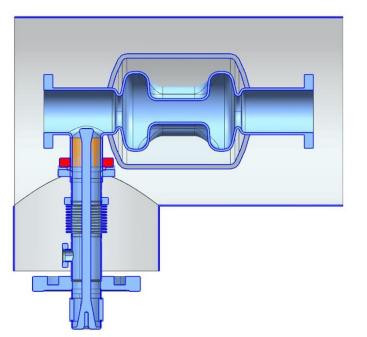


#### Lorentz Detuning

- Nb material properties at cryo temperature
  - Young's modulus 123 GPa (1.79×10<sup>7</sup> psi)
  - Poisson's ratio 0.38
- Lorentz detuning can be reduced by tuner
  - Tuning by push/pull at top and bottom of the cavity






## **Conceptual He Vessel and Cryomodule Design**

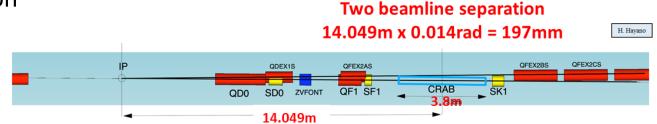
- Cavity thickness 3mm
- 3 cavities per cryomodule



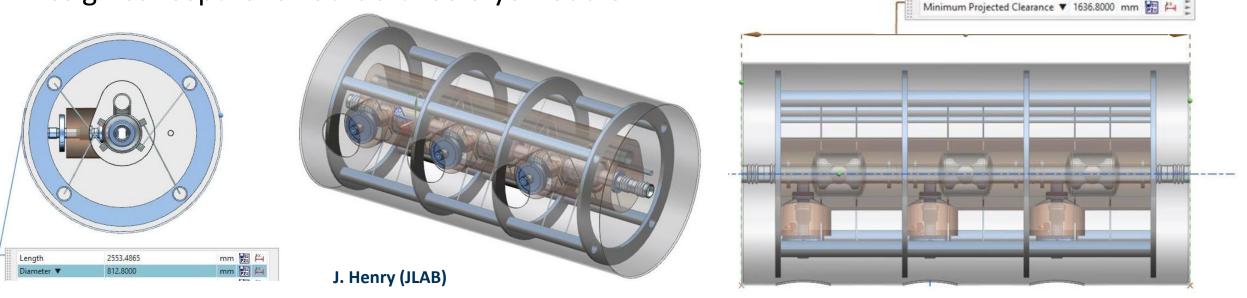
- 20 mm beam pipe
- Outside the He vessel and within the cryomodule






J. Henry (JLAB)






## **Conceptual He Vessel and Cryomodule Design**

- 1 cryomodule for 1.845 MV at 250 GeV
  - 3 cavities in a single cryomodule allow operation with a cavity failure
- 3 cryomodules for 7.4 MV at 1 TeV
- Cryomodule size: length ~ 1.64 m and diameter ~ 0.82 m



• Design concept follows JLab C100 cryomodule





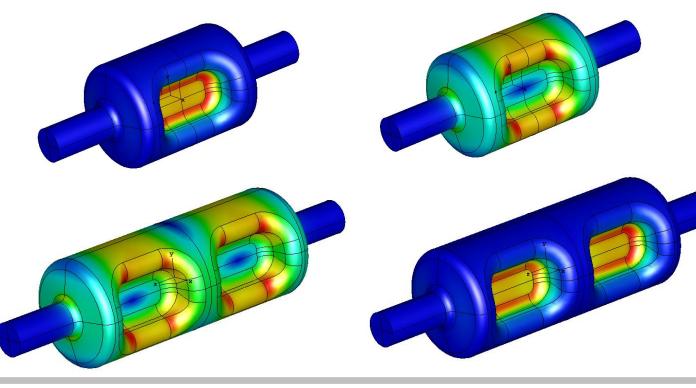


### Summary

- Current work focused on the single cell 1.3 GHz RFD design for the ILC crab cavity design
  - 2-cell cavity design can be considered
- Cavity design is evaluated with 30 mm pole separation and 40 mm beam aperture
- Initial cavity design is completed with FPC
- An acceptable HOM damping mechanism is identified and further options will be evaluated
  - Longitudinal effects to be evaluated
- Preliminary mechanical analysis is completed





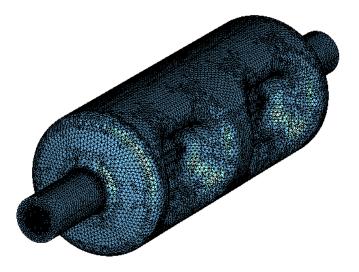

### **Back Up Slides**





## **Cavity Design**

- 30 mm beam aperture
- Two designs options
  - Single cell cavity
  - 2 cell cavity

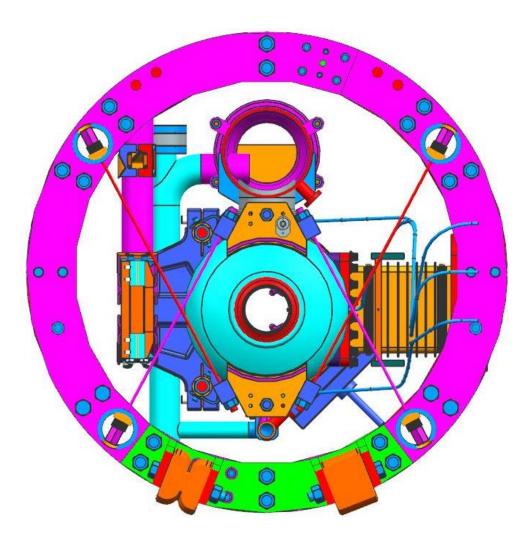



| Property                                       | 1-cell              | 2-cell                   |
|------------------------------------------------|---------------------|--------------------------|
| Operating frequency [GHz]                      | 1.3                 | 1.3                      |
| SOM [GHz]                                      | _                   | 1.188                    |
| 1 <sup>st</sup> HOM [GHz]                      | 2.085               | 1.932                    |
|                                                |                     |                          |
| $E_{\rm p}/E_{\rm t}^*$                        | 3.84                | 3.98                     |
| $B_{\rm p}/E_{\rm t}^*$ [mT/(MV/m)]            | 8.04                | 7.94                     |
| $B_{\rm p}/E_{\rm p}  [{\rm mT}/({\rm MV/m})]$ | 2.10                | 1.99                     |
| <i>G</i> [Ω]                                   | 133.0               | 137.2                    |
| <i>R/Q</i> [Ω]                                 | 280.2               | 556.7                    |
| $R_{\rm t}R_{\rm s}$ [ $\Omega^2$ ]            | 3.7×10 <sup>4</sup> | 7.6×10 <sup>4</sup>      |
|                                                |                     |                          |
| V <sub>t</sub> [MV]                            | 1.0                 | 2.0                      |
| E <sub>p</sub> [MV/m]                          | 33.3                | 34.54                    |
| <i>B</i> <sub>p</sub> [mT]                     | 69.7                | 68.82                    |
| Total V <sub>t</sub> [MV]                      | 1.845               | 1.845                    |
| No. of cavities                                | 2                   | 1                        |
|                                                |                     |                          |
| Pole separation, beam aperture (mm)            | 30                  | 30                       |
| Cavity Length [mm]                             | 172.32              | 297.4                    |
| Cavity Diameter [mm]                           | 107.4               | 109.4                    |
| Pole Length [mm]                               | 85                  | 85                       |
| OLD<br>DMINION<br>UNIVERSIT                    | Accelera            | nter for<br>ator Science |



## **Multipole Components**

- Higher order multipole components for the • bare cavity
- Requires a finer mesh along the beam center •




| Component      | Units                | 1-cell   | 2-cell   |
|----------------|----------------------|----------|----------|
| Vz             | [V]                  | 0.575    | -77.25   |
| V <sub>t</sub> | [V]                  | 1.0E+06  | 1.0E+06  |
| b <sub>o</sub> | [mT/m <sup>2</sup> ] | 0        | 0        |
| b <sub>1</sub> | [mT/m]               | 3.3      | 3.3      |
| b <sub>2</sub> | [mT]                 | -0.0013  | -0.00045 |
| b <sub>3</sub> | [mT m]               | 2275.8   | 2106.6   |
| b <sub>4</sub> | [mT m <sup>2</sup> ] | 9.2      | 3.2      |
| b <sub>5</sub> | [mT m <sup>3</sup> ] | -1.39E+6 | -1.43E+6 |
| b <sub>6</sub> | [mT m <sup>4</sup> ] | -4.83E+4 | -1.68E+4 |
| b <sub>7</sub> | [mT m⁵]              | -1.97E+9 | -1.89E+9 |



**Center for** 

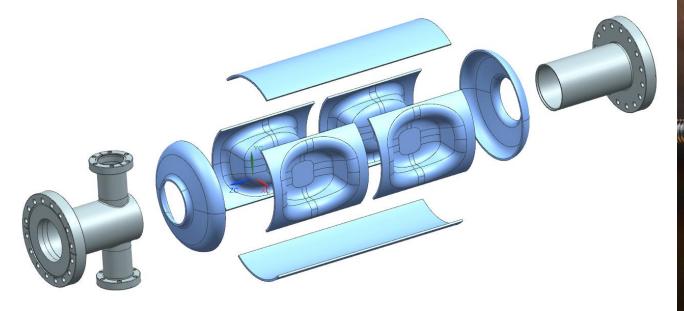

### **C100 Cryomodule Design**







### Final Design for JLEIC Crabbing System - 952 MHz 2-cell RFD




## 952 MHz RFD - Fabrication in Progress

- Material cost sheet Nb forming instead of machining
- Avoid weld seams at high mechanical stress area and high surface magnetic field area
- Use of simple weld only high production yield
- Strategy relevant to final cavity with HOM dampers



Supported by grant from the state of Virginia through SURA







