Fermilab **ENERGY** Office of Science

QMiR Crab Cavity for ILC

Andrei Lunin, Vyacheslav Yakovlev December 8, 2021

WP3 Crab Cavity Design Review Workshop #1

Outline

- General Requirements for the ILC deflecting cavities
 - HOM impedance limitation due to resonance excitation
 - Transverse wakefields effects
- QMiR (2.6 GHz) scaled version for ILC
 - CC aperture limit
 - HOM and Wakefields Analysis
 - **RF Power Requirements**
 - Mechanical Analysis (LFD and dF/dP)
 - Frequency Tuner and Dressed Cavity Design
- Open questions
- Conclusions

Requirements for the ILC Crab Cavities (CC)

Crab cavity location (present ILC optics deck) two beamline distance 14.05m x 0.014rad = 197mm	
	S QFEX2AS QFEX2BS QFEX2CS
QD0 SD0	ZVFONT QF1 SF1 CRAB SK1
- 14.049	e e e e e e e e e e e e e e e e e e e
T. Okugi, ILC Crab Specification Final Discussion meeting, 08/08/21	
Beam energy	<i>E</i> = 250; 500; 1000 GeV
Beam current (pulsed, average)	$I_p = 5.8 \text{ mA}$, $I_{av} = 20 \mu\text{A}$
Pulse width	t _p = 727 μs
Beta function at the CC position (X,Y)	$\beta_x = 2.3 \times 10^4 \text{ m}$, $\beta_y = 1.5 \times 10^4 \text{ m}$
Bunch charge	<i>q</i> = 3.2 nC
CC kick voltage @2.6GHz	<i>U</i> ₀ = 0.92; 1.84; 3.68 MV
Normalized emittance (X,Y)	$\varepsilon_x = 10 \ \mu m$, $\varepsilon_y = 35 \ nm$
Beam size at CC location (X,Y,Z)	σ_x = 0.97 mm, σ_y = 66 µm, σ_z = 300 µm

- The kick voltage is inverse proportional to frequency $(V_t \sim f^{-1})$
- The CC space is limited by a close beamlines distance (< 0.2 m)

🛟 Fermilab

- Too small CC aperture results in large HOM transverse kicks
- Crab cavity @2.6 GHz looks a good compromise

Crab Cavity HOM Impedance Limits

Resonant HOM Excitation ($U_{HOM} = k_0 x_0 I_p r_{\perp}$) can cause:

- a) Crabbing voltage distortion
 - HOM kick voltage should be less than the crabbing voltage

 $U_{HOM} \ll U_0 \sigma_z \omega_{RF}/c$ or $r_\perp \ll rac{U_0 \sigma_z \omega_{RF}/c}{k_0 x_0 I_p}$

- b) Beam emittance dilution
 - HOM kick should be less than the transverse momentum spread

$$U_{HOM} \ll \frac{\sigma_{p_{\perp}}c}{e} = \frac{p_{\parallel}c}{e} \sqrt{\frac{\varepsilon}{\gamma\beta}} \quad or \quad r_{\perp} \ll \frac{E}{k_0 x_0 I_p} \sqrt{\frac{\varepsilon}{\gamma\beta}}$$

For max beam offset @CC: $x_0 < \sigma_x$ and $y_0 < \sigma_y$

- Horizontal Shunt Impedance Limit

 $r_x f_{HOM} \ll$ 61; 87; 122 MOhm·GHz

- Vertical Shunt Impedance Limit

 $r_y f_{HOM} \ll$ 67; 95; 135 MOhm·GHz

250 GeV is the most demanding regime for HOM damping

🛟 Fermilab

Crab Cavity Transverse Wakefields Limits

Incoherent CC excitation (single-bunch effect) can cause:

- a) Crabbing voltage distortion
 - Transverse kick should be less than the crabbing voltage

$$U_{kick} \ll U_0 \sigma_z \omega_{RF}/c$$
 or $k_\perp \ll rac{U_0 \sigma_z \omega_{RF}/c}{qx_0}$

- b) Beam emittance dilution
 - Transverse kick should not increase the bunch emittance

$$U_{kick} \ll \frac{\sigma_{p_{\perp}}c}{e} = \frac{p_{\parallel}c}{e} \sqrt{\frac{\varepsilon}{\gamma\beta}} \quad \text{or} \quad k_{\perp} \ll \frac{E}{qx_0} \sqrt{\frac{\varepsilon}{\gamma\beta}}$$

For max beam offset @CC: $x_0 < \sigma_x$ and $y_0 < \sigma_y$

Horizontal Kick Factor Limit $k_x \ll 2.3$; 3.3; 4.6 V/pC/mVertical Kick Factor Limit $k_y \ll 2.5$; 3.6; 5.1 V/pC/m

Compact HOM-free Deflecting Cavity QMIR

QMiR Cavity for ILC (scaled to 2.6 GHz)

ILC CC Aperture Limit is < Ø20 mm (?)

Variant A (2.6 GHz)

- QMiR Deflecting Cavity has two opposite electrodes
- Smaller distance between electrodes provides a larger transverse kick
- The SR halo causes the heating of the electrodes
- The total area of SR interception is < 20% of the "effective" aperture
- Can we tolerate a smaller than 20mm distance? - ILC BDS group input is needed
- What is a safe maximal SR power dissipation?
 - For a front pair of electrodes with dT<0.5K:

 $P_{max} \approx 2K_{NB}S_e dT/(DF^*h_e) \approx 100W$

K_{NB} = 10 W/m/K - thermal conductivity

 $\mathbf{S}_{\mathbf{e}},\,\mathbf{h}_{\mathbf{e}}$ - electrode cross-section and height

DF = 3.6*10⁻³ – duty factor

• We can easily redesign QMiR to a lager aperture - in progress ...

Fermilab

QMiR Cavity for ILC (scaled to 2.6 GHz)

 $\left(\frac{r_{\perp}}{o}\right) = 1040 \text{ Ohm } (@2.6 \text{ GHz})$ **Operation mode** Maximal dipole *horizontal* HOM $\left(\frac{r_{\perp}}{q}\right)_{x}$ < 10 Ohm (@2.5 GHz); $Q < 1 \times 10^5$ (< $Q_{max} \approx 2.4 \times 10^6$) $\left(\frac{r_{\perp}}{Q}\right)_{v}$ < 10 Ohm (@4 GHz); Maximal dipole *vertical* HOM $Q < 1 \times 10^4 (< Q_{max} \approx 1.7 \times 10^6)$ *k*_z ≈ 45 V/pC Incoherent losses $P_{rad} \approx k_z q^2 n_b f_{rep} = 3 W$ Horizontal kick factor* $k_{x} = 0.1$ (< 2.3) kV/pC/m Vertical kick factor* $k_{\nu} = 0.4$ (< 2.5) kV/pC/m

* GdfidL calculation for 0.3 mm bunch length (cross check with ECHO-3D code is ingoing)

QMiR cavity meets the ILC/CC horizontal and vertical HOM impedance requirements

🛠 Fermilab

QMiR Cavity for ILC RF Power

- RF power needed to maintain the crabbing voltage should compensate
 - the ohmic losses in the cavity (negligible for SRF cavities)
 - voltage induced by the beam if the is off the cavity axis
- The maximal required RF power for the detuned cavity:

$$P = \frac{U_0^2}{4Q\left(\frac{r_{\perp}}{Q}\right)} \left[\left(1 + \frac{I_p Q\left(\frac{r_{\perp}}{Q}\right) k_0 x_0}{U_0}\right)^2 + \left(\frac{2Q\Delta\omega}{\omega_0}\right)^2 \right]$$

- For max beam offset $x_0 < 1$ mm and $\Delta f < 1$ kHz (LFD, microphonics)
 - Beam OFF: $P_{min} \approx 200 \text{ W}$ Optimal Coupling: $Q_L \approx 1 \times 10^6$ Beam ON & Microphonics: $P_{max} \approx 500 \text{ W}$
- Required RF power from the generator (overhead 100%):

Mechanical Analysis LFD and dF/dP (by I. Gonin)

df/dP in Hz/mbar vs. cavity wall thickness

-495

83

4

🚰 Fermilab

QMiR LFD and dF/dP are less than the cavity bandwidth (few kHz)

Mechanical Analysis of Frequency Tuning (by I. Gonin)

QMiR Cavity Slow Tuner Design (by V. Polubotko)

Compact double 2-lever frequency tuner

- Frequency tuner mechanical design concept is fixed
- Fine tuning will be done with piezo actuators (like in LCLS-II).
- Design of the tuner integration with dressed cavity is ongoing

QMiR Cavity for ILC (scaled to 2.6 GHz)

Variant A (2.6 GHz) Ø20 14 mm □ 45 mm

Open questions

- Minimal aperture/distance between electrodes
 - ILC BDS group input is needed
- Frequency tuner range
 - How many BW (>1000) is required for detuning?
- Beam size at CC location
 - Is it the same for all ILC energies (250, 500, 1000 GeV)?
- Multipole components
 - Are there limits on operating mode uniformity?

Conclusions

- Preliminary requirements for the ILC Crab Cavity developed
- A Quasi-Waveguide Multicell Deflecting Resonator (QMIR) is a good option for the ILC Crab Cavity
- QMIR is very compact and simple;
- It has sparse HOM spectrum;
- It has acceptable loss/kick factors;
- For the deflecting voltage of about 0.9 MV the cavity has considerably small surface fields, E_p ≈25 MV/m, B_p ≈ 35 mT.
- No MP in operation voltage domain.
- **QMIR** cavity is considered now for Elletra-2, Trieste.
- □ The kick can be as large as 2MV suitable for ILC upgrade
- Fermilab can design, build and test QMIR cavity for ILC application.

EM design of the QMiR deflecting cavity

- Model is fully parameterized
- The frequency derivation was calculated for each parameter in order to preserve the operating mode frequency on the stage of geometry creation.

- General ellipsoid is used for hollow surface representation
- Global optimum search algorithm

Same Order Mode (SOM) Damping

- The fundamental coupler waveguide is used to suppress SOM modes
- The FPC is purposely shifted from the cavity center in order to provide external coupling for the operating mode and damping lower frequency dipole modes simultaneously

Loss factor:

- For step collimator $k_{//} \sim 1/\sigma$;
- Simulations for ANL/SPX agree well with estimations;
- For $\sigma = 0.3$ mm one may expect for ANL/SPX QMIR $k_{||} \approx 45$ V/pC;
- Expected radiation power: P=k_{//}(eN)²n_b f_{rep}=3 W. This radiation will be dissipated in the beam channel, not in the cavity. Not an issue!

Cryo-losses:

- At 2K one may expect the following surface resistance R_s for N-doped <u>Nb</u>:
 - 2.6 GHz: R_s ≈ 30 <u>nOhm;</u>
 - 3.9 GHz: R_s ≈ 68 <u>nOhm</u>.
- Expected cryo-load (G=130 Ohm), therefore is P_c= V²/[2(R/Q)_t*G/R_s]*DF. For
 2.6 GHz: V=1.25 MV and P ~ 0.6 mW/;
 - 2.6 GHz: V=1.35 MV and $P_c \approx 0.6 \text{ mW}$; - 3.9 GHz: V=0.9 MV and $P_c \approx 0.6 \text{ mW}$

taking into account Duty Factor of DF=3.6e-3. Not an issue!

Mechanical Analysis of Frequency Tuning (by I. Gonin)

Maximum frequency tuning range: ~ 1..2 MHz

18 12/08/21 A. Lunin | QMIR Crab Cavity for ILC

High Order Modes (HOM) Damping

Driven Modal Simulations

2.6 GHz QMiR for ILC Crab Cavity

For the ILC bunch length (0.3 mm rms), the loss and kick factors: k_loss <= 50 V/pC and k_kick <= 0.1 V/pC/mm