TB2020 cross-check analysis

FCAL S&A meeting 8 December 2021

Bohdan Dudar bohdan.dudar@desy.de

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Motivation

No clear data/mc agreement for a long time. See the latest presentation by Roma

Goal

Cross check all steps of the data analysis independently

Geant4: experimental setup

14.03.2020 (LUXE setup)

Geant4: experimental setup

DESY. | TB2020 analysis | Bohdan Dudar

Geant4: experimental setup (notes)

No scintilator triggers

1) I wasn't sure where to put them so I omitted them entirely Should not be a significant impact

DESY. | TB2020 analysis | Bohdan Dudar

8 December 2021

LumiCal

Geant4: experimental setup (notes)

ALPIDE height is only 15 mm

beam is 5x5 mm square with 0.752 mrad divergence
beam at the LumiCal is ~11x11 mm (assuming <u>only</u> divergence)
+ multiple scattering in the air + scintilators + misalignment!
Barely fits in ALPIDE sensors! Explanation of many empty events?

LumiCal

Geant4: ALPIDE

Size	30x15 mm	
Thinkness	50 µm	
Material	Si	

Geant4: LumiCal

- xy size: 200 x 200 mm
- Length: 72 mm = 16 layers x 4.5 mm
- Done via G4PVReplica: each layer <u>is identical</u> **Note:**

Simulation has extra sensor in front!

DESY. | TB2020 analysis | Bohdan Dudar

Geant4: Layer in LumiCal

- All W absorbers are 3.5 mm
- 200 μ m air gaps between layers
- No gap between sensor and absorber

Geant4: Sensor in LumiCal

- Only Si is a sensitive volume
- Simplified <u>symmetric</u> design

Geant4: Where to shoot?

- Try to match pad & sector beam position for 0X₀ layer
- The best I could get using fail&try method

Shift LumiCal: Left: 16.1 mm Up: 12.4 mm gun is at $x,y = \{0, 0\}$

Geant4: Summary

Many simplification:

- No scintilators
- No noise
- No energy sharing between pads
- Not precise sensor & layer design (how much air between layers? Kapton front/back?)
- Beam angular divergence under question
- No simulation of digitization & charge development in Si sensor

However, I believe it should do fine!

FLAME: get the data

flame data 0.tar.gz: 5-51 and 600-638

- flame data 1.tar.gz: 639-651 flame data 2.tar.gz: 652-660 flame_data_4.tar.gz: 661 flame data 5.tar.gz: 662
- flame data 8.tar.gz: 663 flame data 9.tar.gz: 664-670
- flame_data_10.tar.gz: 671
- flame data 11.tar.gz: 672
- flame data 13.tar.gz: 673-674
- flame data 15.tar.gz: 675-711
- flame data 16.tar.gz: 712-739 flame data 17.tar.qz: 740
- flame data 18.tar.gz: 741
- flame data 19.tar.gz: 742-758
- flame data 20.tar.gz: 759-809

flame data 22.tar.gz: 827 flame data 23.tar.gz: 828 flame data 24.tar.gz: 829 flame data 25.tar.gz: 830-912 flame data 26.tar.gz: 913-1074 flame data 27.tar.gz: 1075-1197 flame data 28.tar.gz: 1198-1252 flame data 29.tar.gz: 1253-1514

flame data 30.tar.gz: 1515-1543 and 53076

- flame data 21.tar.gz: 810-826
- data...

•

•

8 December 2021

First 5 GeV entry in the logbook is in the 11th tar!

BUT it would be very nice to have this relation on the

download page, so people can check runs they need

before downloading and not download all > 30 GB of

Had to download all of them to check...

I put it here if somebody will need it later

DESY. | TB2020 analysis | Bohdan Dudar

FLAME: get the data

Short name	Occupied layers	Total events
а	1X ₀ , 2X ₀ , 3X ₀	631 255
b	4X ₀ , 5X ₀ , 6X ₀	554 901
С	7X₀, <mark>8X₀</mark> , 9X₀	754 365
d	10X ₀ , 11X ₀ , 12X ₀	539 300
е	13X ₀ , 14X ₀ , 15X ₀	616 479
f	8X ₀	519 562
aa	$0X_0, \frac{1X_0, 2X_0}{2}$	7 069 123
MC	ALL	1 000 000

FLAME: Normalization

- Almost 1/3 of events are empty in DATA
- Use only NON-empty for normalization!
- I do "non-empty" check for each plane

FLAME: Time frames

- In FLAME: 1 event = 7 time frames
- Previously only 2, 3, 4 time frames were used.
- I will use all time frames. Signals seem physical

DESY. | TB2020 analysis | Bohdan Dudar

MC energy scaled by 145.5288

DESY. | TB2020 analysis | Bohdan Dudar

 $300. \times 10^{3}$ Hit energy deposits after 2X Hit energy deposits after 2X Entries 143528 Entries 1435285 10^c N hits N hitș data data 250 10⁵ mc mc 200 10^{4} 10^{3} 150 10² 100 50 10 0 20 50 10 30 40 60 80 0 70 90 100 200 400 600 800 1000 0 energy (ADC) energy (ADC)

MC energy scaled by 140.2467

 $300. \times 10^{3}$ Hit energy deposits after 3X Hit energy deposits after 3X Entries 215677 Entries 2156772 10^t N hits N hits data data 10⁵ 250 mc mc 200 10^{4} 10^{3} 150 100 10^{2} 50 10 0 20 50 10 30 40 60 80 90 100 0 70 200 400 600 800 1000 0 energy (ADC) energy (ADC)

MC energy scaled by 145.5288

 $300. \times 10^{3}$ Hit energy deposits after 4X Hit energy deposits after 4X Entries 263402 Entries 2634021 10^c N hits N hits data data 250 10⁵ mc mc 200 10^{4} 10^{3} 150 100 10^{2} 50 10 0 20 50 100 0 10 30 40 60 80 90 70 200 400 600 800 1000 0 energy (ADC) energy (ADC)

MC energy scaled by 145.5288

DESY. | TB2020 analysis | Bohdan Dudar

DESY. | TB2020 analysis | Bohdan Dudar

Hit energy deposits after 6X Hit energy deposits after 6X $300 - \times 10^{3}$ Entries 324741 Entries 3247415 10^t N hits N hits data data 10⁵ 250 mc mc 200 10^{4} 10^{3} 150 100 10² 50 10 0 20 30 40 50 100 10 60 70 80 90 0 200 400 600 800 1000 0 energy (ADC) energy (ADC)

MC energy scaled by 145.5288

Hit energy deposits after 7X Hit energy deposits after 7X $300 - \times 10^{3}$ Entries 574070 Entries 5740703 10^c N hits N hits data data 10⁵ 250 mc mc 200 10^{4} 10^{3} 150 100 10² 50 10 0 20 30 40 50 10 60 70 80 90 100 0 200 400 600 800 1000 0 energy (ADC) energy (ADC)

MC energy scaled by 145.5288

Hit energy deposits after 8X Hit energy deposits after 8X $300 - \times 10^{3}$ Entries 404348 Entries 4043489 10^t N hits N hitș data data 10⁵ 250 mc mc 200 10^{4} 10^{3} 150 100 10² 50 10 0 20 30 40 50 10 60 70 80 90 100 0 200 400 600 800 1000 0 energy (ADC) energy (ADC)

MC energy scaled by 145.5288

MC energy scaled by 145.5288 Hit energy deposits after 9X Hit energy deposits after 9X $300 - \times 10^{3}$ Entries 442218 Entries 4422184 10^c N hits N hits data data 10⁵ 250 mc mc 200 10^{4} 10^{3} 150 100 10² 50 10 0 20 10 30 40 50 80 0 60 70 90 100 200 400 600 800 1000 0 energy (ADC) energy (ADC)

MC energy scaled by 145.5288

DESY. | TB2020 analysis | Bohdan Dudar

MC energy scaled by 145.5288

DESY. | TB2020 analysis | Bohdan Dudar

MC energy scaled by 145.5288

DESY. | TB2020 analysis | Bohdan Dudar

MC energy scaled by 145.5288

DESY. | TB2020 analysis | Bohdan Dudar

MC energy scaled by 145.5288

DESY. | TB2020 analysis | Bohdan Dudar

MC energy scaled by 145.5288

DESY. | TB2020 analysis | Bohdan Dudar

Control plots: try to cut and then normalize!

MC energy scaled by 145.5288

- Maybe there are "almost" empty events but with some noise hits!?
- I should also reject those for normalization!
- Try to cut < 10 ADC hits and normalize only non-empty events again

DESY. | TB2020 analysis | Bohdan Dudar

Control plots: try to cut and then normalize!

MC energy scaled by 145.5288

- It doesn't work.
- It means "noise" hits come mostly in events with normal hits!
- They are not empty events.

DESY. | TB2020 analysis | Bohdan Dudar

Control plots: try to cut and then normalize!

· Check what are those "noise hits"

Control plots: studying "noise" hits

Beam profile is visible even in noise hits!?

Control plots: studying "noise" hits

Beam profile is visible even in noise hits!?

My guess:

Sometimes FLAME fails to measure energy properly

Control plots: What about SRS?

srs_data_1.tar.gz: 101 - 118 srs_data_2.tar.gz: 11, 12, 13, 15, 118, 157-164 srs_data_3.tar.gz: 16, 164-179 srs_data_4.tar.gz: 179-191 srs_data_5.tar.gz: 19, 191-200 srs_data_6.tar.gz: 20, 200-218 srs_data_7.tar.gz: 22-36, 218, 219, 239 srs_data_8.tar.gz: 36-48,70-77 srs_data_9.tar.gz: 77-92 srs_data_10.tar.gz: 92-99

Runs: 78, 79, 80 No FLAME, only SRS in layers 1-8 LumiCal tilted by 2 degrees 5 GeV beam Beam position ~4 pads above than in FLAME runs

DESY. | TB2020 analysis | Bohdan Dudar

Control plots: What about SRS?

DESY. | TB2020 analysis | Bohdan Dudar

- MC is good
- Missing events! → Check telescope!
- Missing hits in FLAME ?
- Wrong energy assignment in FLAME?
- Check SRS agreement? Slightly more complicated because cuts will influence N empty events more

Back up: couldn't easily convert ADC to MeV...

DESY. | TB2020 analysis | Bohdan Dudar