

ILD Technical Convener Meeting *Vincent Boudry for the SiW-ECAL groups*

Institut Polytechnique de Paris

ILD Technical Convenor Meeting, 23/03/22

An Ultra-Granular SiW-ECAL for experiments

Particle Flow optimised calorimetry

- Standard requirements
 - Hermeticity, Resolution, Uniformity & Stability (*E*, (θ,φ), t)
- PFlow requirements:
 - Extremely high granularity
 - Compacity (density)

Vincent.Boudry@in2p3.fr

SiW+CFRC baseline choice for future Lepton Colliders:

- Tungsten as absorber material
 - $X_0 = 3.5 \text{ mm}, R_M = 9 \text{ mm}, \lambda_1 = 96 \text{ mm}$
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design: Sensor+RO<2mm
 - Allows for ~any pixelisation
 - Robust technology
 - Excellent signal/noise ratio: ≥10 Intrinsic stability (vs environment, aging) Albeit expensive...
 - Tungsten–Carbon alveolar structure
 Minimal structural dead-spaces
 - Scalability

To be assessed

by prototypes

Not included: general services

SiW-ECAL, CALICE ECFA REview 2018

ILD Building blocks: SLAB's & ASU's

(SMB)

R&D for "mass production" and QA

- Quality tests & preparation of large production
- Modularity → ASU & SLABs
- Choice of square wafers
 - (≠ from hex: SiD, CMS HGCAL)
- Numbers ($R_{FCAL} = 1.8 \text{ m}, |Z_{Endcaps}|=2.35 \text{ m}$) (likely to be reduced by 30–40%)
 - Barrel modules: 40 (as of today all identical)
 - Endcap Modules: 24 (3 types)
 - ASUs = ~75.000
 - Wafers ~ 300,000 (2500 m²)
 - VFE chips ~ 1,200,000
 - Channels: 77Mch
 - Slabs = 6000 (B) + 3600 (EC) = 9600
 - \neq lengths and endings

Vincent.Boudry@in2p3.fr

SiW-ECAL, CALICE ECFA REview 2018 U layout of a long slab

ASU R&D

Most complex element: electro-mechanical integration

- Distrib / Collect signals from VFE (ASICs), Analog & Digital
- Mechanical placer & holder for Wafers \rightarrow precision
- Thickness constraints

Milestone	Date	Object	Details	REM
1 st ASIC proto	2007	SK1 on FEV4	36 ch, 5 SCA	proto, lim @ 2000 mips
1 st ASIC	2009	SK2	64ch, 15 SCA	3000 mips
1 st prototype of a PCB	2010	FEV7	8 SK2	СОВ
1 st working PCB	2011	FEV8	16 SK2 (1024 ch)	CIP (QGFP)
1 st working ASU in BT	2012	FEV8	4 SK2 readout (256ch)	best S/N ~ 14 (HG), no PP retriggers 50– 75%
1 st run in PP	2013	FEV8-CIP		BGA, PP
1 st full ASU	2015	FEV10	4 units on test board 1024 channel	S/N ~ 17–18 (High Gain) retrigger ~ 50%
1 st SLABs	2016	FEV10 & 11	7 units	
pre-calo	2017	FEV10 & 11	7 units	S/N ~ 20 (12) _{Trig,} 6–8 % masked
1 st technological ECAL	2018	SLABvFEV10 & 11 & 13 SK2a+ COB + Compact stack	SK2 & SK2a (⊃timing)	Improved S/N Timing

Calorimeter stack

SiW-ECAL, CALICE ECFA REview 2018

Beam-test 2015-2018

1st 'full' technological calorimeter

DESY Beam Tests

- November 2021 (due march 2020!), 2 wks
 - 1st 15-layers runs, 10.2 X₀
 - 4 types of Boards
 - Calibration (punch-though e-, showers)
 - low-E showers
 - Some defective layers (HV), low efficiency
- 1st use of new compate DAQ "ILD-like"

Vincent.Boudry@in2p3.fr

1st full calorimeters

DESY Beam Tests

- March 2022 (on-going), 1 wk
 - 2nd 15-layer run, compact DAQ
 - improved Monitoring (next slide)
 - 5 types of FEVs : FEV10–13 + COB
 - W: 7×2.8mm + 8×4.2mm = 15.2 X₀

coreKapton slo	Layer position	SLAB	SLB- ID	SLB-Add	ASU type	wafer
14	0	34	15	0	FEV13	650
13	1	35	16	1	FEV13	650
12	2	33	20	2	СОВ	500
11	3	29	22	3	COB	500
10	4	19	13	4	FEV11	320
9	5	20	11	5	FEV11	320
8	6	21	14	6	FEV11	320
7	7	30	19	7	FEV12	500
6	8	31	17	8	FEV12	500
5	9	24	7	9	FEV12	500
4	10	25	3	10	FEV12	500
3	11	22	4	11	FEV11	320
2	12	18	2	12	FEV11	320
1	13	23	6	13	FEV10	320
0	14	17	10	14	FEV11	320

TB2022

Main goal:

- Shower studies, lin(E), $\sigma(E)$, $\sigma(\theta)$ @ 1–6 GeV
- To be complemented at CERN SPS 10–300
 GeV (prelim June 22)
- + 1 week combined tech running with AHCAL

Online Hit Maps (≥~0.5 mips)

Almost all layers very good (despite some aging)

- installation in 1 day

SiW-ECAL, CALICE ECFA REview 2018

Event displays

Event display Run_name_0 #Hits=68 #Coincidences=15

Event display Run_name_3 #Hits=96 #Coincidences=14

'Long Slab'

Vincent.Boudry@in2p3.fr

SiW-ECAL, CALICE ECFA REview 2018

Vincent.Boudry@in2p3.fr

1st "electric long slab" (2018)

Support of interface boards + 12 ASUs (DBD)

- 2+6+4 ASUs = ~3.2 m
- Rotatably along long axis (for beam test)
 Rigidity : ≤ ~1 mm per ASU
- Total access to upper and lower parts
 - 320µm Baby wafers (4×4 pixels) on the bottom

SiW-ECAL, CALICE ECFA REview 2018

DESY-2018 beam test

L1MPV:ASU {abs(L1MPV-63)<40}

Electronics adjustments

Path length induced reflexions on clock line

- Fluctuation over logical level
- Extra clock tick \rightarrow bad ASIC configuration
- RC filter adaptation (Sigrity simulation)
- Impedance adaptation required depenc
 - Limited to 8 FEV12 + baby-wafers
- Noise in the signal
 - High frequency perturbation in the HV lir
 - Solved by RC filters on the HV line
 - Possible back-propagation of ASICs noisy through HV ?
 Also issues on the data routing...

Vincent.Boudry@in2p3.fr Extension of e-Long SLab | CALICE meeting | 28/09/2020

FEV2.0

Vincent.Boudry@in2p3.fr Extension of e-Long SLab | CALICE meeting | 28/09/2020

HPK « No 8" wafer bef. end 2021 »

Requirements

- Compatible 2 et 6" wafers ; Compatible with FEV1*
 - 6 Matrices 6" OR 2 × 1,5 Matrices 6"
- 24 ASICe vs 16 ASICs
- Improved mecanics, scalability & maintenance
 - Connectors
 - HV distribution & Filtering on PCB
 - 1 HV per card \Rightarrow independent test, exchangeability
- LV Regulation on board with LDO
 - Power-pulsing : DIF ⇒ FEV, lower currents
- Corrected data & clock distributions
 - Must be OK for 2,1 m (EndCaps) = 8 FEV
 - Timing \leq 0,1 ns ? \rightarrow for SK3 ?
- Compatibility new DAQ
- Improved noise & decoupling

Vincent.Boudry@in2p3.fr

Extension of e-Long SLab | CALICE meeting | 28/09/2020

Mechanics

HV individuation \rightarrow allow for operation in stack (single or double) and long slab

High voltage power supply

- Kapton is enlarged to protect sides during insertion or sliding in the support.
- High voltage is driven by the board instead of the kapton for assembly, maintenance and costs reductions.

HV Kapton for wafer + protection

Example of faulty board

To unplug: slice to the right

nanni@llr.in2p3.fr

A Long Slab with FEV2

Adaptative design wrt FEV12

- Integration of new DAQ with Power Scheme
 - (see Jihane presentation)
- Possibility to include FEV13b-COBs in LS
- Modular design :
 - Incremental length
- Full equipped ends of SLAB
 - 1st and Last ASU
 - Regulators / Decoupling on each ASU
 - Shower response at end of SLAB
 - Possible integration new ASU's in stack

Vincent.Boudry@in2p3.fr

Extension of e-Long SLab | CALICE meeting | 28/09/2020

New packaging for SKIROC2A cl

- "Historic" Novapack stopped BGA encapsulation activities (Apple's fault ?)
- Replacement hard to find for small quantities
- Swiss-based Aptasic
 - \rightarrow No conclusive results
- Contact with a new Chinese company (recommend by Omega)
 - Package BGA size: 17mm × 17 mm
 - Thickness: 1.2mm

Upgrade bench of unique chip

FEV2.0

Design (fall 21) by LLR and IJCLab Pre-serie (Feb. 22)

- 1 board soldered in IJCLab elec. workshop
 - Difficulties with heat inertia (mass planes w/o heat bridges) → being corrected
- Very good "raw" noise results
 - · Being investigated with unglued sensors

Fake-FEV

- electrical model (no ASICs, etc)
 - HV leakage current of 5 FEV ~ 1 sensor

Vincent.Boudry@in2p3.fr

Silicon Sensors

Cost driver

- ~30% of the total cost of the SiW-ECAL
 - ⇒ Units Cost reduction(CALIIMAX prog
- Decoupling of Guard Ring (Square Eve
- new design of ILD detector

Command Sensors (@ Hamamatsu)

- △ Minimal cost of Command ≥ 20k€
- direct contact with HPK engineers
- Possibility of design for 8" in 186mm alveola

- Square events"
- "Square events"
- cross talk between guard rings and pixels

'quantum unit' of ILD dimensions (here 6" wafer)

ECAL Services

CFRC+W Structures

H. Vídeau, M. Anduze, T. Pierre-Émíle, ______D. Grondín, J. Gíraud

Simulation

ECAL driver used in ILD models has been largely re-written (→ DD4HEP)

- more modular code:
- less duplication Barrel & Endcap
- more configurable...

Effect of cracks [RAW= no correction at all!!]

– Drop ~ 15%

Improved digitization, modelling the SK2 (& beyond) \Rightarrow \supset timing

Timing requirements: reflexions on-going

Vincent.Boudry@in2p3.fr

Eupraxia Workshop | Ecole polytechnique | 12/10/2016

Implication of HL schemes

Detector Parameters: scaling rules

- Cell lateral size

- Shower separation (EM~2×cell size)
- Cell time resolution (1 cm/c ~ 30 ps)
 - Time performance for showers
 - ParticleID, easier reconstruction
- Longitudinal segmentation
 - sampling fraction
 - E resolution (ECAL \sim 15%/ \sqrt{E})
 - shower separation/start
- ECAL inner radius; Barrel Z_{Start}
- ECAL-HCAL distance
- Barrel-Endcap distance
- Dead-zones sizes (from Mechanics, Cooling) ,

Number of cells $\nearrow \Rightarrow \text{Cost} \nearrow (1/\text{size}^2)$ Cell density $\nearrow \Rightarrow \text{Power consumption} \And$ Time resolution $\searrow \Rightarrow \text{Power} \checkmark$

threshold, passive vs active cooling dead-zones ≯

> NEED TO BE FULLY RE-EVALUATED for EW region

Inner Radius $\nearrow \Rightarrow$ Tracking performance \checkmark Cost $\cancel{2}^2$ (\supset Magnet, Iron) Gaps $\cancel{2} \Rightarrow$ PFlow performances \checkmark

Review of physical implication (from TeV): see Linear collider detector requirements and CLD, F. Simon @ FCC-Now (nov 2020) Physics Requirement studies @ 250 GeV: see Higgs measurements and others, M. Ruan @ CEPC WS, (nov 2018)

Summary of Activities: Present and To come

Beam Test operation (finaly !)

- DESY20-03 → DESY21-11, DESY22-03 (CERN22-06)
- Many results to come
 - 15 layers \Rightarrow 22–26 layers
- New FEV design
 - Improved Power, HV, noise, flexibility
 - Workhorse for all operation
 - Stack with single / double ASU layers
 - Long SLab v2 (~all equipped)
 - Availability limitd by €€€ for sensors
 - bunch from 2021's travel money

Many issues to be looked at:

- validation of thermal scheme (global simulation)
- Validation of mechanical scheme from existing prototype.
- Estimation of optimal of timing
- optimisation of power/performances
- requirements for a SK3

They all depends on the machine (\supset HL-ILC)

- circular ≠ linear
 - manpower on system is wanning

BACK-UP

Vincent.Boudry@in2p3.fr

ILD Technical Convener Meeting | 23/03/22

Electronics & DAQ

Ωmega ASICs:

- A set of ASICs adapted for all CALICE large scale prototypes
 - Gradual improvement
 - Purely digital DAQ
- suitable for ILC conditions
 - low power consumption using power-pulsing (~1%)
 - low noise pre-amp, dual gain 12-bits ADC, ns TDC
 - self-trigger with local storage, delayed digitization and read-out
 - high integration (36-64 channels), daisy chaining

R&D:

will required update for final integration: ~3⁺ years of dev

- full zero-suppression, I2C bus, new technology
- Improvement of Timing ? Learning from CMS-HGCAL ASIC
- new scheme needed for circular colliders (power, readout)
 - Decision on DAQ Scheme : continous vs triggered ? Central trigger → lower noise requirements, feasible ?

Technical requirement on prototypes:

- Integration in cassettes 150 300 cm long
- 12k 27k cells (200-500 ASICs), power pulsed
 - sensitivity to mip signal (tracking)
 - uniformity, stability, linearity
- Reproducibility
 - Typically ~20–50 layers
 - will be $\sim 10^4$ in final design
- Ex: HGCAL HCAL

DAQ:

- Low power, Small size interfaces
 - ECAL-HCAL = 3 cm, HCAL-Coil or Barrel-Endcap ~ 5-6 cm
- Single side readout

ILC: Pulsed Powering in 2-4T field...

- Passive cooling, local power management

ECAL Example

SKIROC2 / 2A Analogue core

ECAL Separation

Clustering

Vincent.Boudry@in2p3.fr FCC France | 02/12/2021

A crack-less ECAL geometry

Structure composite & séisme

Problem of bending stress of alveoli skins: influence / evolution of thickness of outer plies

Safety coefficient

- Static: Sufficient / to the stress induced by weight of modules
- just sufficient / seism (s =3.2 for Japan?)
 - / risks during integration and transport

-> increase nb of ext. plies... Impact on ECAL dead zone=0,5mm= 1 extra external ply on modules

