2022/1/2

1

ILC/Particle Flow Algorithm using Graph Neural Network

SHUSAKU TSUMURA/KYUSHU UNIVERSITY

Papers

D GravNet:

Learning representations of irregular particle-detector geometry with distanceweighted graph networks

Eur. Phys. J. C (2019) 79:608 https://doi.org/10.1140/epjc/s10052-019-7113-9

• Object condensation : **Object condensation: one-stage grid-free multi-object reconstruction in physics detectors, graph, and image data** Eur. Phys. J. C (2020) 80:886 https://doi.org/10.1140/epjc/s10052-020-08461-2

 \blacktriangleright Whole approach : **Multi-particle reconstruction in the High Granularity Calorimeter using object condensation and graph neural networks** https://arxiv.org/abs/2106.01832

GravNet - Network -

- \blacktriangleright Input Data : $B \times V \times F_{IN}$
	- $B:$ Number of examples including in a batch
	- V ∶ Number of hits for each detector
		- F_{IN} : Number of the features for each hit
- \triangleright S: Set of coordinates in some learned representation space
- \blacktriangleright F_{LR} : learned representation of the vertex features

GravNet

- Input example of initial dimension $V \times F_{IN}$ is converted into a graph.
- \blacktriangleright the f_j^i features of the v_j vertices connected to a given vertex or aggregator v_k are converted into the f_{jk} quantities, through a potential (function of euclidean distance d_{ik}).

 \blacktriangleright The potential function $V(d_{jk})$ is introduced to enhance the contribution of close-by vertices. Example: $V(d_{jk}) = \exp(-d_{jk}^2)$

 \blacktriangleright The $\widetilde{f_{jk}}^i$ functions computed from all the edges associated to a vertex of aggregator v_k are combined, generating a new feature \widetilde{f}_k \int_{0}^{i} of v_{k} .

Example : the average of the $\widetilde{f_{jk}}^i$ across the j edges / their maximum

(b) $S2 \triangle$ $S1$

4

2022/1/21

GravNet

- For each choice of gathering function, a new set of features \widetilde{f}_k $e^i \in \widetilde{F_{LR}}$ is generated.
- \blacktriangleright The $\widetilde{F_{LR}}$ vector is concatenated to the initial vector. (e)
- \blacktriangleright Activation function : tanh
- \triangleright The F_{OUT} output carries collective information from each vertex and its surrounding.

Loss function - Network Learning -

The object condensation approach : Aiming to accumulate all object properties in condensation points

Assignment of vertices for each sower Identification of noise Update of

loss term

- The value of β_i ($0 < \beta_i < 1$) is used to define a charge q_i per vertex i $q_i = \operatorname{arctanh}^2 \beta_i + q_{\min}$ $(\beta_i \rightarrow 1 : q_i \rightarrow +\infty)$
- The charge q_i of each vertex belonging to an object k defines a potential $V_{ik}(x) \propto q_i$
- The force affecting vertex j can be described by \overline{a}

$$
q_j \cdot \nabla V_k(x_j) = q_j \nabla \sum_{i=1}^N M_{ik} V_{ik}(x_j, q_i).
$$

$$
M_{ik} = \begin{cases} 1 \text{ (vertex } i \text{ belonging to object } k) \\ 0 \text{ (otherwise)} \end{cases}
$$

2022/1/21

Loss function

 \blacktriangleright The potential of object k can be approximated :

 $V_k(x) \approx V_{\alpha k}(x, q_{\alpha k}),$ with $q_{\alpha k} = \max_i q_i M_{ik}.$

An attractive and repulsive potential are defined as :

 $\tilde{V}_k(x) = ||x - x_{\alpha}||^2 q_{\alpha k}$, and $\hat{V}_k(x) = \max(0, 1 - ||x - x_{\alpha}||)q_{\alpha k}.$

The total potential loss $L_V: L_V = \frac{1}{N} \sum_{j=1}^N q_j \sum_{k=1}^K (M_{jk} \breve{V}_k(x_j) + (1 - M_{jk}) \hat{V}_k(x_j)).$

Loss function

- The L_V has the minimum value for $q_i = q_{\min} + \epsilon \ \forall i$
- ▶ To enforce one condensation point per object, and none for background or noise vertices, the following additional loss term L_{β} is introduced :

$$
L_{\beta} = \frac{1}{K} \sum_{k} (1 - \beta_{\alpha k}) + s_B \frac{1}{N_B} \sum_{i}^{N} n_i \beta_i,
$$

ightharpoonup The loss terms are also weighted by arctanh β_i :

$$
L_p = \frac{1}{\sum_{i=1}^N \xi_i} \cdot \sum_{i=1}^N L_i(t_i, p_i) \xi_i, \text{ with}
$$

$$
\xi_i = (1 - n_i) \operatorname{arctanh}^2 \beta_i.
$$

 s_B : hyperparameter describing the background suppression strength $K :$ Maximum value of objects N_B : Number of background n_i : Noise tag (if noise, it equals 1.)

8

p_i : Featutes

 $L_i(t_i, p_i)$: Loss term (Difference between true labels and outputs of network)

Loss function

 \blacktriangleright If high efficiency instead of high purity is required :

$$
L'_{p} = \frac{1}{K} \sum_{k=1}^{K} \frac{1}{\sum_{i=1}^{N} M_{ik} \xi_{i}} \cdot \sum_{i=1}^{N} M_{ik} L_{i}(t_{i}, p_{i}) \xi_{i}.
$$

 \blacktriangleright In practice, individual loss terms might need to be weighted differently :

