A tapered pulsed solenoid as optical matching device for the undulator-based ILC positron source

Overcoming limitations of positron focusing elements

C. Tenholt, M. Mentink, M. Fukuda, <u>**G. Loisch**</u>, G. Moortgat-Pick, T. Okugi, P. Sievers, K. Yokoya

ILC Sources Group Meeting, 31.01.2022

ILC undulator-based positron source

Introduction to layout and technical challenges

- Fast rotating target wheel
- 1ms-positron pulse duration
- OMD for positron capturing
 - Flux concentrator
 - Focus variation during long pulses
 - Quarter-wave transformer
 - Limited yield

DESY.

Principal Layout: Ti-Wheel with a Diameter of 1.0 m, rotating at 100 m/s, 2000 rpm.

- New approach: Pulsed solenoid
 - Stable and reproducible focus
 - High magnetic flux density
 - Compatible with long pulse duration
 - Manageable heat load in solenoid
 - Manageable heat load on target (!?)

Pulsed solenoid for positron focusing

Background and previous work

- Pulsed solenoid was e.g. used at LEP
- Constant, small coil winding cross-section for uniform current density
- Pulsed to reduce power/thermal load
- Potentially higher yield (!?)
- Prel. parameters:
 - ~50 kA peak current
 - 4 ms half-sine pulse + 1ms flat-top
 - ▶ 7 turns, linear taper (20mm \rightarrow 80mm)
 - Peak field ~5 T

- Average heat load on target: 73 W + 711 W
- Peak force on wheel 612 N

DESY.

CÉRN

KEK

Concentration of field in solenoid

Magnetic flux density [T] without shield

DESY.

KEK

Shielding of field from target wheel

Pulsed solenoid for ILC undulator-positron source | ILC Sources Meeting |

Heating of titanium wheel

Without shielding

UH DESY.

With shielding

- ▶ Reduction of induced heat 73W + 711W \rightarrow 31W + 298W
- ▶ Reduction of peak force on target 612N \rightarrow 263N
- Mag. flux "wings" due to finite width of collar shield
- Slight field drag (by target movement)
- ightarrow Further optimisation along with mechanical design

Magnetic flux density B(z) on titanium shield [T]

Summary

- 2D & 3D simulation in Comsol
- Movement of titanium plate included (100m/s)
- Peak solenoid current: 46886 A
- Combined shield geometry model: coild shield w/ min. distance to shielding (~1mm) + collar shield
- ightarrow reduction of force & heat load on target
- ► → Increase of peak $B(z) \sim 10\%$

Magnetic field stability

Variation of magnetic field during flat-top current

- Transient current distribution subject to skin-effect
- > Skin depth @125 Hz \sim 6 mm \rightarrow current distribution should be stable
- < 1% deviation of field simulated</p>

KEK

e+ yield simulations: OMD & capture linac

Simulation from target to end of pre-accelerator (M. Fukuda, K. Yokoya)

- So far only analytical calculations
- Now yield simulated for:
 - Shielded solenoid
 - Unshielded solenoid
 - Quarter-wave transformer (ref.)

Geant4

UH DESY.

- Comsol (pulsed solenoid field, incl. target/eddy currents)
- POISSON (magnetic field pre-accelerator, QWT)
- Cavity phases scanned for max. yield

Linac parameters:

- 250 (400) MeV final energy
- 2 standing wave cavities (~15.2 MV/m)
- 7 (11) traveling wave cavities (7.5-8 MV/m)

e+ yield simulations: OMD & capture linac

Simulation from target to end of pre-accelerator (M. Fukuda)

- Energy spectrum narrower for QWT
- Bunch lengths similar
- Yields for 250/400 MeV similar

	QWT	Pulsed sol (w/ shield)	Pulsed sol (w/o shield)
Ne+ (z <7mm)	10713	16436	18052
Average energy [MeV]	394	393	394
Energy spread [%]	7.2	9.8	9.5
Bunch length (1 σ)	16.6	16.4	15.5
Yield (Z <7mm)	1.07	1.64	1.81

Yield simulations: booster linac setup

Simulation from capture linac end to damping ring (T. Okugi)

- Energy increase to 5GeV
- Collimation in dogleg chicane
- Bunch compression

DESY.

Design adjusted to meet current technical layout (e.g. increased offset)

Yield simulations: booster linac results

Simulation from capture linac end to damping ring (T. Okugi)

- Simulations for QWT, solenoid w/ & w/o shield
- Different settings of path length adjuster
 → merely any effect
- Minimal yield reduction in booster linac
- Power loss in linac minimised w/ collimators

(m^{1/2})

 $b_{x}^{1/2}, b_{y}^{1/2}$

h_{yP} (mm)

-200

Yield simulations: summary

Brief overview of simulations target \rightarrow damping ring

- Yield of undulator-based positron source w/ solenoid matching device simulated
- Significant yield improvement to QWT
- ▶ Possible trade-off: target heatload \leftrightarrow yield
- Further optimisation maybe possible

		Beamle	Positron Yield			
	@dogleg	@booster	@EC	@DR	@capture (Z <7mm)	@DR
QWT	0.677 kW	0.014 kW	4.01 kW - 5.56 kW	13.15 kW - 14.3 kW	1.07	~1.1
Pulse solenoid w/o shield	0.927 kW	0.055 kW	5.86 kW - 7.93 kW	17.39 kW - 16.01 kW	1.81	1.91
Pulse solenoid with shield	0.871 kW	0.064 kW	5.58 kW - 7.90 kW	17.73 kW - 16.24 kW	1.64	1.74

Coil stress

Dynamic deformation w/o support & heat load

- Max. peak von-Mises stress ~146 Mpa
 - Soft Cu tensile strength ~200MPa
- Average power dissipation in Cu coil: ~11.5 kW

Insulated **Solenoid construction** support rods **Possible mechanical design** Solenoid coil Tapered winding 7 planar windings with interconnections Conductor cooled from inside Metal supports to hold coil Metal support bridges Solenoid coil Support rods insulated from support bridges ► Washers e.g. of SiN ceramics Magnetic shielding cut at support locations Influence on field to be determined Ceramic washers Metal support rod Main shielding to target unaffected Metal support bridges

Summary & Outlook

Recent progress and next steps

- Design of pulsed solenoid is evolving
 - → First fields
 - → Heat load on target
 - \rightarrow Shielding for heat load reduction
 - \rightarrow Yield simulations
- So far no show stoppers
 - → Target heat load under control
 - \rightarrow Head space in pulse length/shape
- Significant yield improvement to quarter wave transformer
- Next steps

CERN

- Prel. mechanical design
- Influence of field variations on yield
- Global optimisation

Thank you for your attention!

Contact

Carmen Tenholt (tenholtc@hsu-hh.de) Helmut-Schmidt University, Hamburg Matthias Mentink, Peter Sievers CERN, Geneva Gregor Loisch (gregor.loisch@desy.de) DESY, Hamburg Masafumi Fukuda, Toshiyuki Okugi, Kaoru Yokoya KEK, Tsukuba Gudrid Moortgat-Pick University Hamburg

Previous designs

Other pulsed solenoids in accelerator applications

- LEP positron source capture device
 - ▶ 2.5kA, 20µs

▶ 0.83T

▶ 100Hz

LAL

DESY

KEKB

Induced current density/ magnetic flux

Titanium wheel

Without shielding

With shielding

Current distribution

Dynamic deformation w/o support

