

AFB studies at 500 GeV (update)

ILD Top/HF group meeting 25/01/22

A. Irles*, J. P. Márquez*

Orsay/Tohoku/Valencia HQ@ILC Team
AITANA group at IFIC-CSIC/UV

Observables for BSM studies

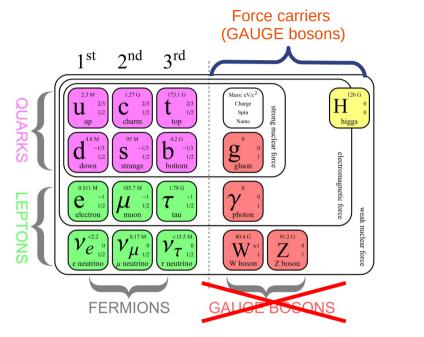
Forward-backward asymmetry:

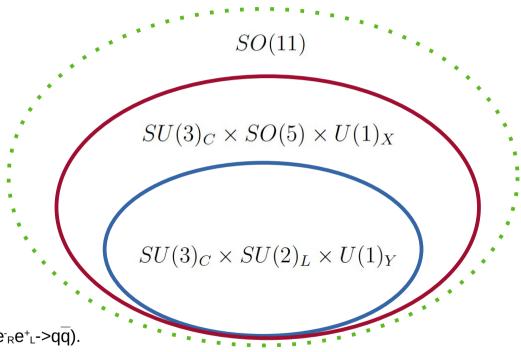
$$A_{\rm FB} = \frac{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}{\int_{-1}^1 \frac{d\sigma}{d\cos\theta} d\cos\theta}$$

• From theory to experiment, i.e., from cross-section to events:

$$N = L \cdot \sigma \cdot \epsilon$$

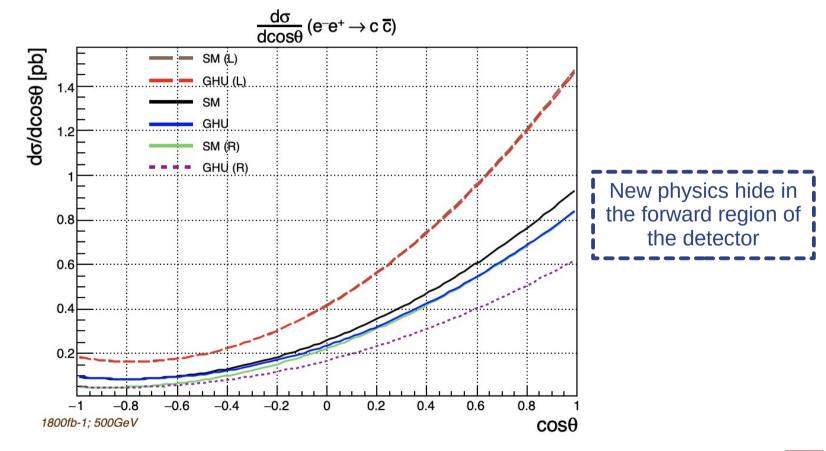
- Experimental definition:
 - Reduce bias from systematic errors from the luminosity and efficiency w.r.t.
 the cross-section observable


$$A_{FB}^{Exp} = \frac{N_F - N_B}{N_{Total}}$$



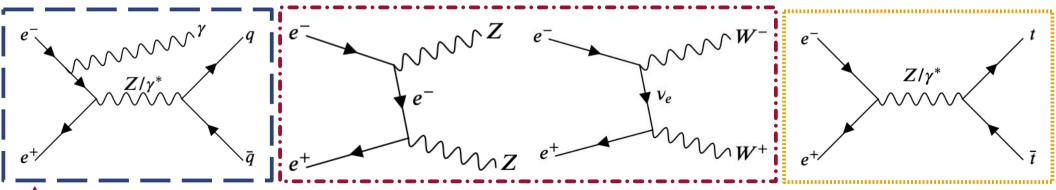
Gauge-Higgs Unification (GHU) Models

The GHU unified all the force carriers under a single gauge group:


- A-Models[1]: Stronger deviations in the right-handed case ($e^{-}_{R}e^{+}_{L} > q\overline{q}$).
- B-Models[2]: Stronger deviations in the left-handed case ($e^{-} Le^{+}_{R} > q\overline{q}$).
 - The gauge group of GHU is also related to Grand Unification Theory (GUT), embedded in the SO(11) group.

Gauge-Higgs Unification (GHU) Models

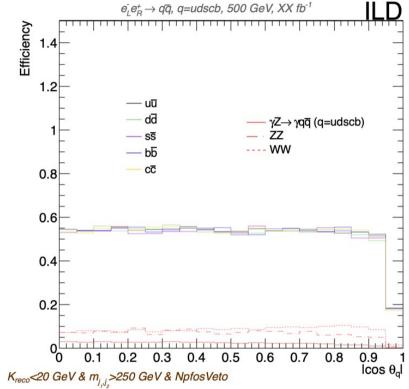
A-Model cross-section deviation examples (c-quark) 500 GeV:



Preselection of qq signals

- Once we have the reconstructed pfos of the events with different targets:
 - We cluster the signal in jets (VLC algorithm):
 - The algorithm packs together the PFOs into two jets.
 - Signal is expected in a back-to-back topology (but not the backgrounds!)
 - Most of the background is radiative return (yqq)
 - And most of the data is background!
 - x3 for e_Le_R and x6 for e_Re_L at 250 GeV
 - x4 for e⁻Le⁺R and x7 for e⁻Re⁺L at 500 GeV
 - Then we apply different cuts to the signal to remove the background processes

Summary from the last meeting (e_Lp_R)


Cuts:

- K_{reco} < 20 GeV
- $m_{2jets} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 4.5
- Photon veto (E<240 GeV; $|\cos\theta_q|$ <0.97)
- y23<0.006

VLC Algorithm parameters:

- R = 1.0
- y = 0.0
- $\beta = 1.0$

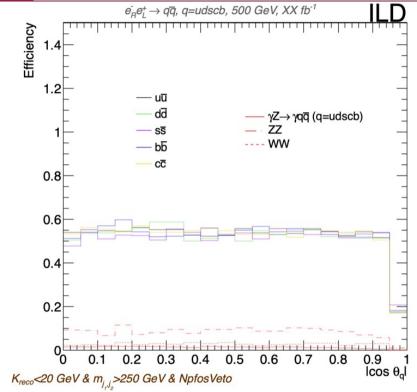
	Background/Signal				
	ISR	WW	ZZ		
No Cut	4.044	1.193	0.106		
+ Cut 1	0.871	0.784	0.059		
+ Cut 2	0.863	0.784	0.059		
+ Cut 3	0.243	0.785	0.059		
+ Cut 4	0.182	0.787	0.059		
+ Cut 5	0.134	0.615	0.051		
+ Cut 6	0.102	0.123	0.009		
		×			
X2 tha	GeV!	Too high!			

& Cnpfos Veto & Photon Veto 1 & y₂₃<0.006

Efficiency of the preselection for the different quark flavours vs the angular distribution of the two jet system (up to cut 6)

Summary from the last meeting (e_Rp_L)


Cuts:


- K_{reco} < 20 GeV
- $m_{2jets} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 4.5
- Photon veto (E<240 GeV; $|\cos\theta_q|$ <0.97)
- y23<0.006

VLC Algorithm parameters:

- R = 1.0
- y = 0.0
- $\dot{\beta} = 1.0$

	Background/Signal				
	ISR	WW	ZZ		
No Cut	7.416	0.016	0.127		
+ Cut 1	1.597	0.014	0.072		
+ Cut 2	1.582	0.014	0.072		
+ Cut 3	0.350	0.014	0.072		
+ Cut 4	0.227	0.014	0.073		
+ Cut 5	0.140	0.015	0.062		
+ Cut 6	0.103	0.001	0.013		

& Cnpfos Veto & Photon Veto 1 & y 20.006

Efficiency of the preselection for the different quark flavours vs the angular distribution of the two jet system (up to cut 6)

Samples (500 GeV)

$e_L p_R$

Luminosity (fb^{-1})						
$qar{q} + ext{ISR} \mid ext{WW} \mid ext{ZZ} \mid tar{t}_1$						
46.4	49.0	56.6	7704.9			

Cross-Section (fb)					
$oxed{qar{q} + ext{ISR} \mid ext{WW} \mid ext{ZZ} \mid ext{$tar{t}_1$}}$					
32470.5	7680	680.2	165.0		

e_Rp_L

Luminosity (fb^{-1})					
$qar{q} + \mathrm{ISR}$	WW	ZZ	$tar{t}_1$		
47.0	500	72.5	8354.1		

Cross-Section (fb)					
$qar{q} + ext{ISR}$	WW	ZZ	$t ar{t}_1$		
17994.7	33.5	271.9	63.7		

K_{ISR}<20 GeV

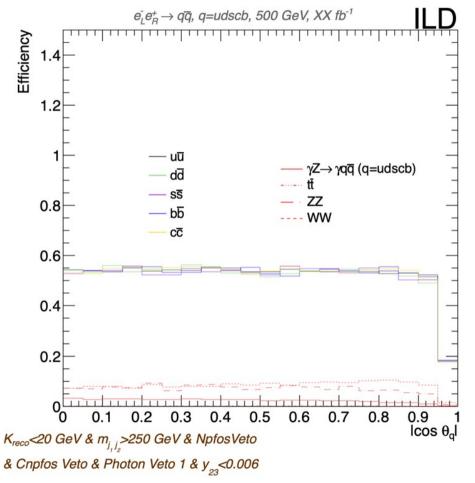
	Cross-Section (fb)						
	$b ar{b}$	$c\bar{c}$	$sar{s}$	$u\bar{u}$	$dar{d}$		
$qar{q}$	1051.6	1633.1	1051.5	1643.5	1058.2		
ISR	5391.9	4933.3	5389.0	4951.9	5366.6		
Ratio	5.1	3	5.1	3	5.1		

K_{ISR}<20 GeV

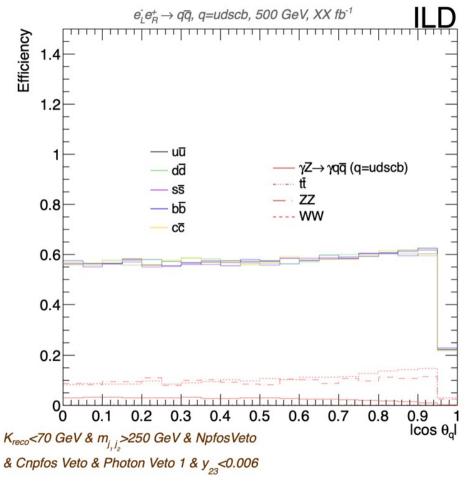
	Cross-Section (fb)							
	$bar{b}$	$bar{b}$ $car{c}$ $sar{s}$ $uar{u}$ $dar{d}$						
$qar{q}$	226.6	733.0	221.7	732.8	224.1			
ISR	3233.5	3092.5	3222.5	3075.0	3243			
Ratio	14.2	4.2	14.5	4.2	14.5			

K_{ISR}<70 GeV

	Cross-Section (fb)							
	$bar{b}$	$c \overline{c}$	$sar{s}$	$u\bar{u}$	$dar{d}$			
$qar{q}$	1231.3	1917.3	1232.2	1923.5	1239.9			
ISR	5212.2	4649.1	5208.4	4671.8	5184.9			
Ratio	4.2	2.4	4.2	2.4	4.2			


K_{ISR}<70 GeV

	Cross-Section (fb)							
	$bar{b}$ $car{c}$ $sar{s}$ $uar{u}$ $dar{d}$							
$q\bar{q}$	264.7	857.9	260.1	857.5	263.7			
ISR	3185.4	2967.7	3184.1	2950.3	3203.5			
Ratio	12.0	3.5	12.2	3.4	12.1			



Jesús P. Márquez Hernández - ILD Top/HF group meeting 25/01/21

Jesús P. Márquez Hernández - ILD Top/HF group meeting 25/01/21

$K_{reco} < 20 \text{ GeV}$

	Efficiency (%)		Background/Signal			gnal	
	$bar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t ar{t}$
No cut	100	100	100	4.04	1.19	0.11	0.11
+ Cut 1	70.9	70.5	70.8	0.87	0.78	0.06	0.007
+ Cut 2	70.8	70.5	70.8	0.86	0.78	0.06	0.007
+ Cut 3	70.7	70.4	70.5	0.24	0.79	0.06	0.007
+ Cut 4	70.7	70.3	70.0	0.20	0.79	0.06	0.007
+ Cut 5	68.5	68.1	67.6	0.14	0.61	0.05	0.007

$K_{reco} < 70 \text{ GeV}$

	Efficiency (%)		Background/Signal			gnal	
	$bar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$tar{t}$
No cut	100	100	100	3.30	1.19	0.11	0.11
+ Cut 1	94.6	94.3	94.3	0.95	1.07	0.09	0.062
+ Cut 2	94.2	94.1	94.2	0.91	1.07	0.09	0.057
+ Cut 3	94.1	93.9	93.7	0.24	1.07	0.09	0.058
+ Cut 4	94.0	93.8	93.0	0.18	1.07	0.09	0.058
+ Cut 5	90.0	89.6	88.6	0.11	0.69	0.07	0.060

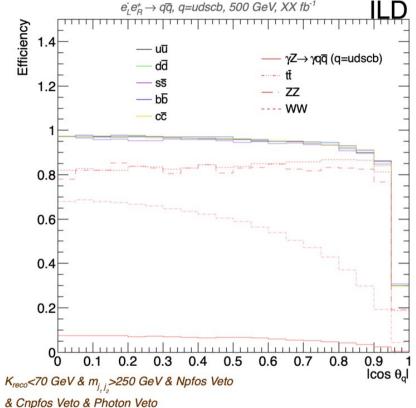
Higher statistic

Similar B/S

. .

Higher flavour differences

We retouched the cuts for $K_{reco}=70$ (e_Lp_R)

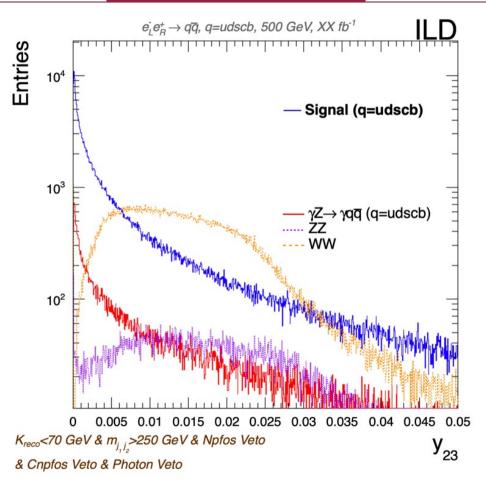

Cuts:

- K_{reco} < 70 GeV
- $m_{_{2jets}} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 3.5
- Photon veto

VLC Algorithm parameters:

- R = 1.0
- y = 0.0
- $\beta = 1.0$

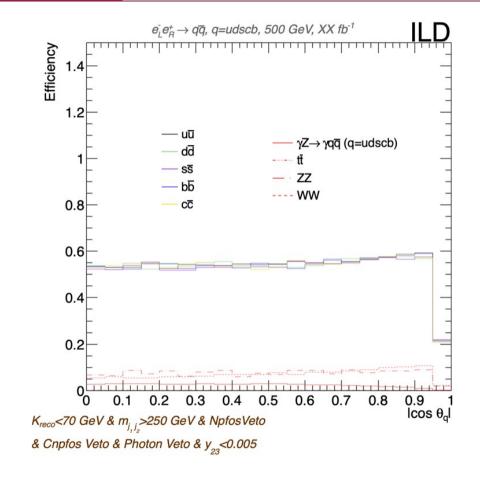
	Effic	ciency	(%)	Background/Signal				
	$b\bar{b}$	$c\bar{c}$	$q \bar{q}$	ISR	WW	ZZ	t ar t	
No cut	100	100	100	3.30	1.02	0.09	0.09	
+ Cut 1	94.6	94.3	94.3	0.95	0.92	0.08	0.05	
+ Cut 2	94.2	94.1	94.2	0.91	0.91	0.08	0.05	
+ Cut 3	94.1	93.9	93.7	0.24	0.91	0.08	0.05	
+ Cut 4	94.1	93.8	93.4	0.19	0.91	0.08	0.05	
+ Cut 5	90.1	89.7	89.1	0.11	0.59	0.06	0.05	



Rebalanced Now, we carry on the analysis looking in the $e_L p_R$ case

Looking for a sixth cut (y₂₃)



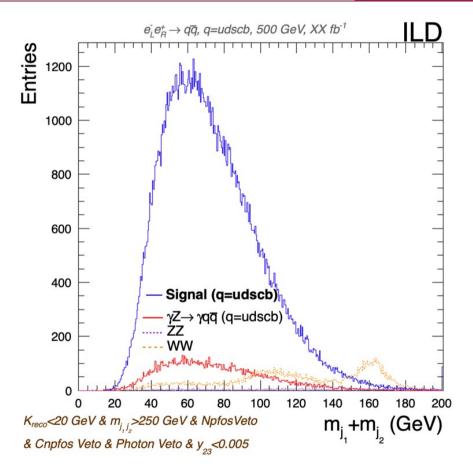


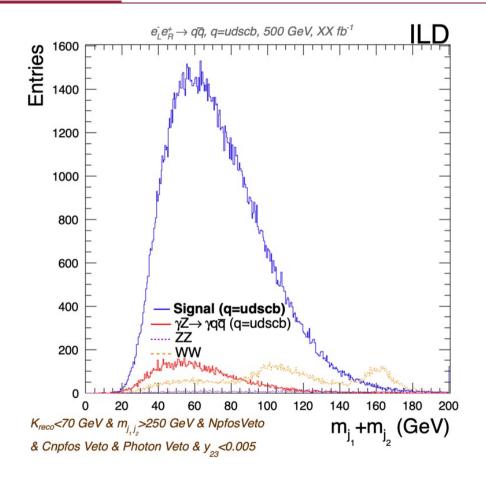
Cut y_{23} <0.005 for K_{reco} =20 & 70 GeV

Cut y₂₃<0.005 for K_{reco}=20 & 70 GeV

K_{reco}<20 GeV

	Efficiency (%)			Background/Signal				
	$b \overline{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t ar{t}$	
$y_{23} < 0.005$	48.6	48.7	48.7	0.10	0.09	0.007	0.0001	


K_{reco}<70 GeV


	Efficiency (%)			Background/Signal				
	$bar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t ar{t}$	
$y_{23} < 0.005$	52.9	52.6	52.6	0.08	0.11	0.010	0.0002	

Looking for a seventh cut (m_{j1}+m_{j2})

Seventh cut: $m_{j1}+m_{j2}$ ($k_{reco}<20$ GeV)

	Effic	ciency	(%)	Background/Signal				
$m_{j_1} + m_{j_2} < X \text{ GeV}$	$bar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$tar{t}$	
120	45.9	45.9	45.8	0.10	0.05	0.004	2e-06	
130	47.0	47.1	47.1	0.10	0.05	0.004	3e-06	
140	47.6	47.8	47.8	0.10	0.06	0.005	5e-06	
150	48.0	48.3	48.2	0.10	0.06	0.005	8e-06	

$|\cos(\theta)| < 0.9$

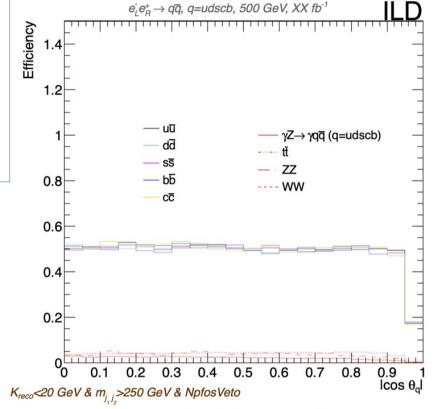
	Effic	ciency	(%)	Background/Signal				
$m_{j_1} + m_{j_2} < X \text{ GeV}$	$b ar{b}$	$c\bar{c}$	$q \bar{q}$	ISR	WW	ZZ	$t ar{t}$	
120	48.4	48.5	48.3	0.10	0.04	0.003	2e-06	
130	49.5	49.9	49.7	0.10	0.04	0.004	4e-06	
140	50.2	50.6	50.5	0.10	0.05	0.004	6e-06	4
150	50.6	51.1	50.9	0.10	0.05	0.004	9e-06	

Seventh cut: $m_{j1}+m_{j2}$ (k_{reco} <70 GeV)

	Efficiency (%)			Background/Signal				
$m_{j_1} + m_{j_2} < X \text{ GeV}$	$bar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t ar{t}$	
120	49.7	49.5	49.5	0.08	0.07	0.006	4e-06	
130	50.8	50.8	50.9	0.08	0.08	0.007	7e-06	
140	51.5	51.6	51.7	0.08	0.08	0.007	9e-06	•
150	51.9	52.0	52.1	0.10	0.08	0.007	1e-05	

	Effic	ciency	(%)	Background/Signal				
$m_{j_1} + m_{j_2} < X \text{ GeV}$	$b ar{b}$	$c\bar{c}$	$q \bar{q}$	ISR	WW	ZZ	$t ar{t}$	
120	51.7	51.8	51.7	0.08	0.04	0.004	3e-06	
130	52.9	53,2	53.1	0.08	0.05	0.005	7e-06	
140	53.7	53.9	53.9	0.08	0.05	0.005	8e-06	4
150	54.1	54.4	54.4	0.08	0.05	0.005	1e-05	

Final selection for $K_{reco}=20$ GeV (e_Lp_R)


Cuts:

- K_{reco} < 20 GeV
- $m_{2jets} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 3.5
- Photon veto
- $y_{23} < 0.005$
- $m_{j1}+m_{j2} < 140 \text{ GeV}$

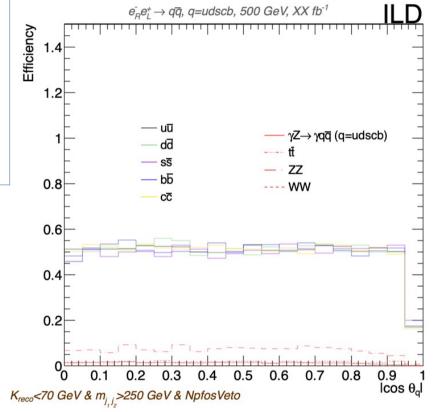
VLC Algorithm parameters:

- R = 1.0
- y = 0.0
- $\dot{\beta} = 1.0$

	Effic	ciency	(%)	В	ackgrou	ind/Sig	nal
	$bar{b}$	$c\bar{c}$	$qar{q}$	ISR	WW	ZZ	$t ar{t}$
No cut	100	100	100	4.04	1.19	0.11	0.11
+ Cut 1	70.9	70.5	70.8	0.87	0.78	0.06	0.007
+ Cut 2	70.8	70.5	70.8	0.86	0.78	0.06	0.007
+ Cut 3	70.7	70.4	70.5	0.24	0.79	0.06	0.007
+ Cut 4	70.7	70.4	70.0	0.20	0.79	0.06	0.007
+ Cut 5	68.5	68.1	67.6	0.14	0.61	0.05	0.007
+ Cut 6	48.6	48.7	48.7	0.10	0.09	0.007	1e-04
+ Cut 7	47.6	47.8	47.8	0.10	0.06	0.005	5e-06

& Cnpfos Veto & Photon Veto & y_{23} <0.005 & m_{j_1} + m_{j_2} <140 GeV

Final selection for $K_{reco}=20$ GeV (e_Rp_L)


Cuts:

- K_{reco} < 20 GeV
- $m_{2jets} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 3.5
- Photon veto
- $y_{23} < 0.005$
- $(m_{j1}+m_{j2} < 140 \text{ GeV})$ Not needed

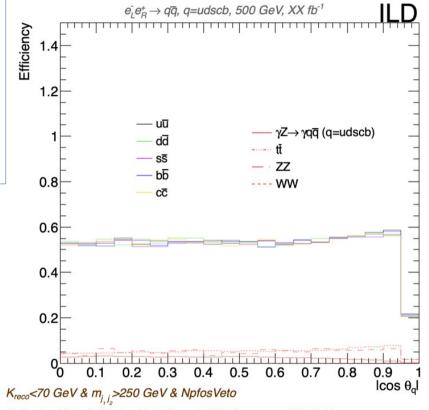
VLC Algorithm parameters:

- R = 1.0
- y = 0.0
- $\beta = 1.0$

	Effic	ciency	(%)	Background/Signal				
	$b\bar{b}$	$c\bar{c}$	$qar{q}$	ISR	WW	ZZ	$t ar{t}$	
No cut	100	100	100	7.42	0.02	0.13	0.11	
+ Cut 1	70.6	70.7	71.0	1.60	0.01	0.07	0.008	
+ Cut 2	70.5	70.7	71.0	1.58	0.01	0.07	0.008	
+ Cut 3	70.5	70.6	70.7	0.35	0.01	0.07	0.008	
+ Cut 4	70.5	70.6	70.5	0.26	0.01	0.07	0.008	
+ Cut 5	68.4	68.3	67.9	0.15	0.01	0.06	0.008	
+ Cut 6	48.8	48.9	48.6	0.10	5e-04	0.01	8e-05	
+Sa.7	47.7	48.0	47.8	0.10	2e-04	0.007	4e-06	

& Cnpfos Veto & Photon Veto & y_{23} <0.005

Final selection for $K_{reco}=70$ GeV (e_Lp_R)


Cuts:

- K_{reco} < 70 GeV
- $m_{2jets} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 3.5
- Photon veto
- $y_{23} < 0.005$
- $m_{j1}+m_{j2} < 140 \text{ GeV}$

VLC Algorithm parameters:

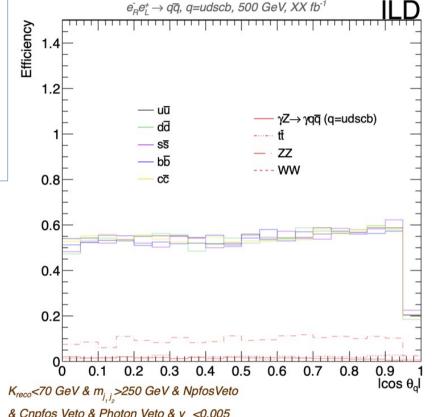
- R = 1.0
- y = 0.0
- $\beta = 1.0$

	Effic	ciency	(%)	Background/Signal				
	$b ar{b}$	$c\bar{c}$	$qar{q}$	ISR	WW	ZZ	$t ar{t}$	
No cut	100	100	100	3.30	1.02	0.09	0.09	
+ Cut 1	94.6	94.3	94.3	0.95	0.92	0.08	0.05	
+ Cut 2	94.2	94.1	94.2	0.91	0.91	0.08	0.05	
+ Cut 3	94.1	93.9	93.7	0.24	0.91	0.08	0.05	
+ Cut 4	94.1	93.8	93.4	0.19	0.91	0.08	0.05	
+ Cut 5	90.1	89.7	89.1	0.11	0.59	0.06	0.05	
+ Cut 6	52.6	52.5	52.6	0.08	0.11	0.01	2e-04	
+ Cut 7	51.5	51.6	51.7	0.08	0.08	0.007	9e-06	

& Cnpfos Veto & Photon Veto & y_{23} <0.005 & $m_i + m_i < 140 \text{ GeV}$

We have to check this weird behavior at high angles with new samples

Final selection for $K_{reco}=70$ GeV (e_Lp_R)


Cuts:

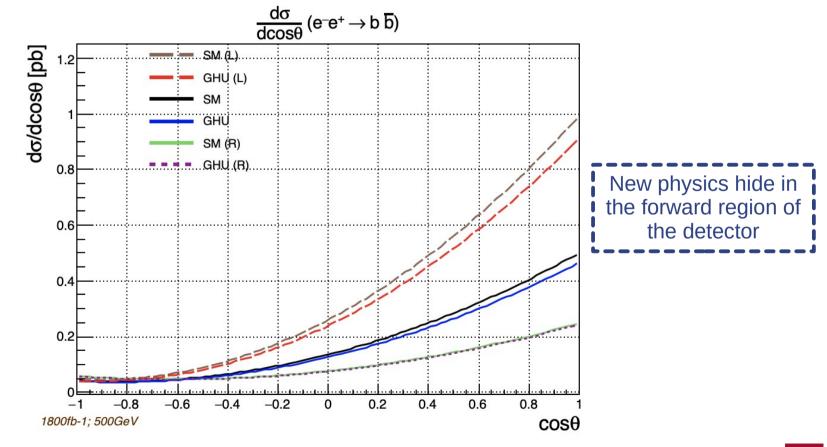
- K_{reco} < 70 GeV
- $m_{2iets} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 3.5
- Photon veto
- $y_{23} < 0.005$
- $(m_{i1}+m_{i2} < 140 \text{ GeV})$ Not needed

VLC Algorithm
parameters:

- R = 1.0
- y = 0.0
- $\beta = 1.0$

	Effic	eiency	(%)	Background/Signal				
	$b ar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t ar{t}$	
No cut	100	100	100	6.19	0.01	0.11	0.10	
+ Cut 1	93.9	94.4	94.3	1.75	0.01	0.09	0.06	
+ Cut 2	93.6	94.3	94.2	1.68	0.01	0.09	0.06	
+ Cut 3	93.6	94.0	93.7	0.37	0.01	0.09	0.06	
+ Cut 4	93.5	94.0	93.4	0.28	0.01	0.09	0.06	
+ Cut 5	89.5	89.9	89.2	0.13	0.01	0.07	0.06	
+ Cut 6	52.1	52.6	52.5	0.09	5e-04	0.01	1e-04	
+S47	51.0	51.7	51.6	0.09	3e-04	0.01	5e-06	

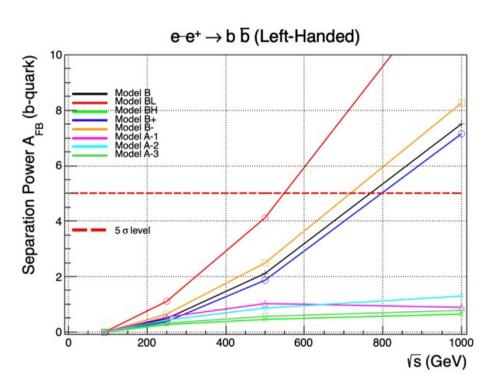
& Cnpfos Veto & Photon Veto & y 23<0.005

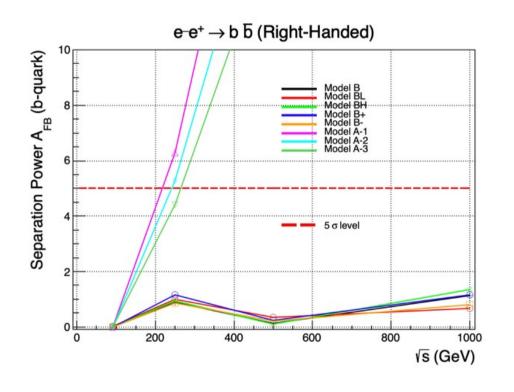


Back-Up slides

Gauge-Higgs Unification (GHU) Models

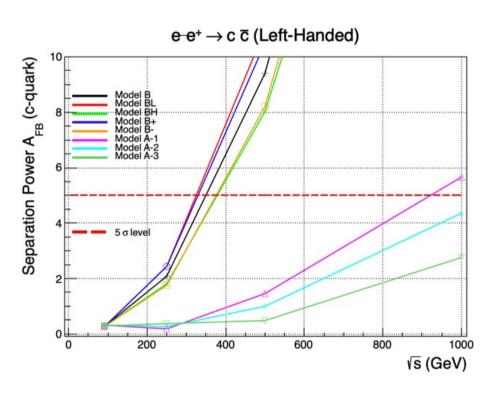
• B-Model cross-section deviation examples (b-quark) 500 GeV:

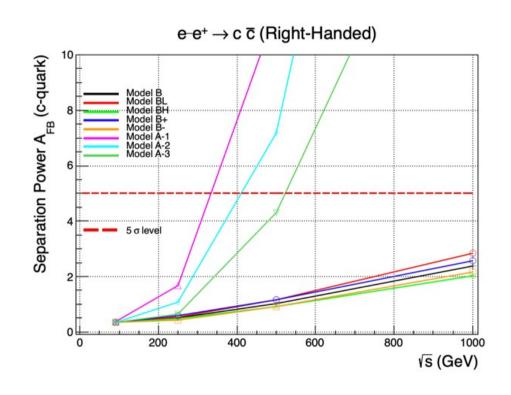




Jesús P. Márquez Hernández - ILD Top/HF group meeting 25/01/21

Prospects for b-quark in GHU (A_{FB})





Prospects for c-quark in GHU (A_{FB})

Efficiency up to cut 6 (previous meeting)

WW

46.5

46.4

46.4

46.3

34.9

5.3

e_Lp_R

 $q\bar{q}$

70.8

70.8

70.5

70.0

67.3

50.9

 $b\bar{b}$

70.9

70.8

70.7

70.7

68.5

51.1

Cut 1

+ Cut 2

+ Cut 4

Cut 3

Cut 5

Cut 6

 $c\bar{c}$

70.5

70.5

70.4

70.3

68.0

51.2

Efficiency (%)

ISR

15.2

15.1

4.2

3.2

2.2

1.3

ZZ	
39.3	
39.3	
39.2	
39.1	

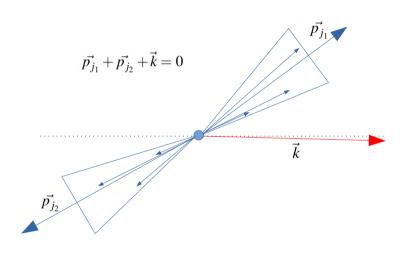
32.5

4.3

e_Rp_L

	Efficiency (%)						
	$b ar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	
Cut 1	70.6	70.7	71.0	15.3	63.8	40.4	
+ Cut 2	70.5	70.7	71.0	15.1	63.7	40.3	
+ Cut 3	70.5	70.6	70.7	3.3	63.7	40.3	
+ Cut 4	70.4	70.6	70.2	2.2	63.6	40.1	
+ Cut 5	68.3	68.2	67.6	1.28	62.8	33.0	
+ Cut 6	51.4	51.3	50.9	0.7	2.7	5.1	

Optimization of the cuts: K_{re}



- K_{reco} is a good estimator of E_{v} :
 - Definition of acolinearity:

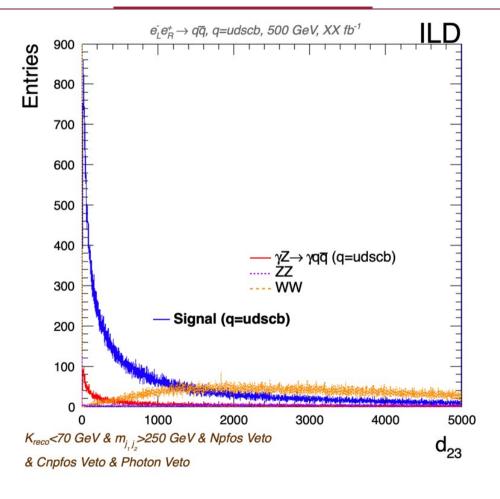
$$\sin \Psi_{acol} = \frac{\vec{p_{j_1}} \times \vec{p_{j_2}}}{|\vec{p_{j_1}}| \cdot |\vec{p_{j_1}}|}$$

 Momentum of the collinear photon in the ultrarrelativistic limit (m_{jets} << p_{jets}):

$$|\vec{k}| \approx K_{reco} = \frac{250 \,\text{GeV} \cdot \sin \Psi_{acol}}{\sin \Psi_{acol} + \sin \theta_1 + \sin \theta_2}$$

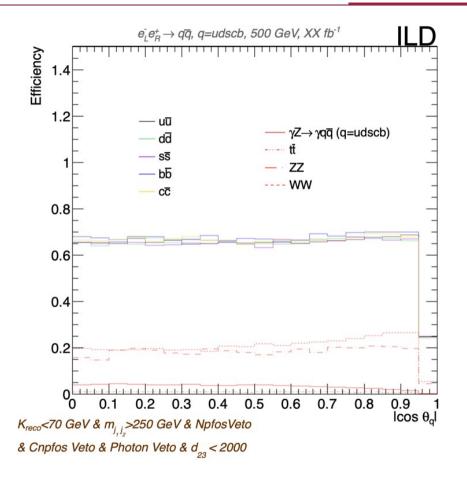
Kinematics of a two jets system reconstruction with ISR

Samples (500 GeV)



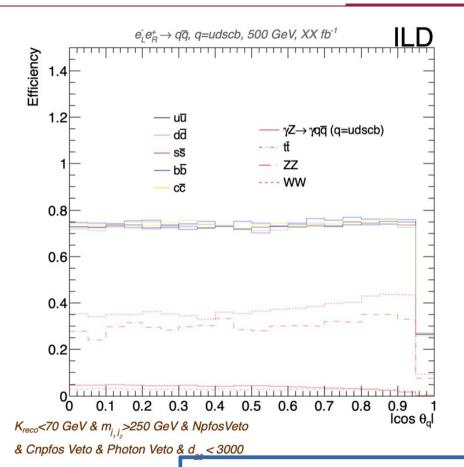
- The samples names are:
 - qq+ISR: 2f_hadronic
 - WW: 4f_WW_hadronic
 - ZZ: 4f_ZZ_hadronic
 - \circ $t\bar{t}$:
 - 6f_ttbar_yycyyc
 - 6f_ttbar_yycyyu
 - 6f_ttbar_yyuyyc
 - 6f_ttbar_yyuyyu

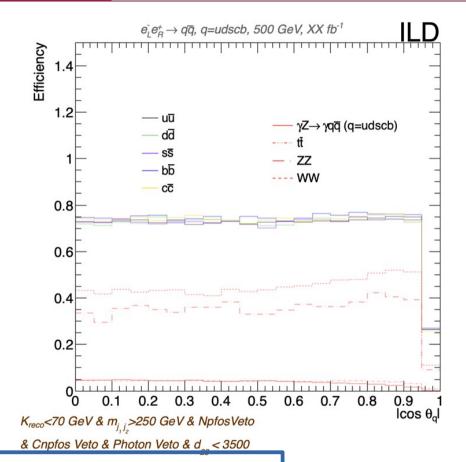
Looking for a sixth cut (d₂₃)



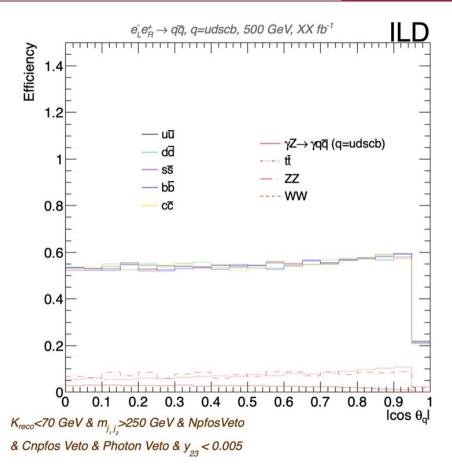


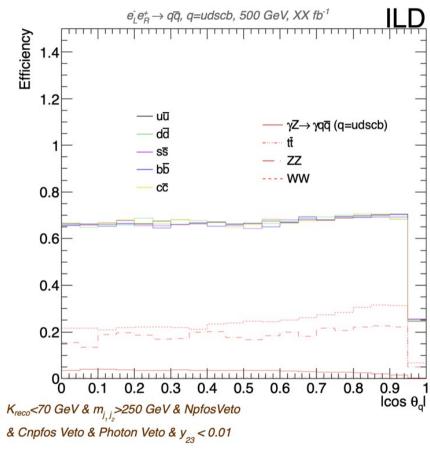
Looking for a sixth cut (d₂₃)



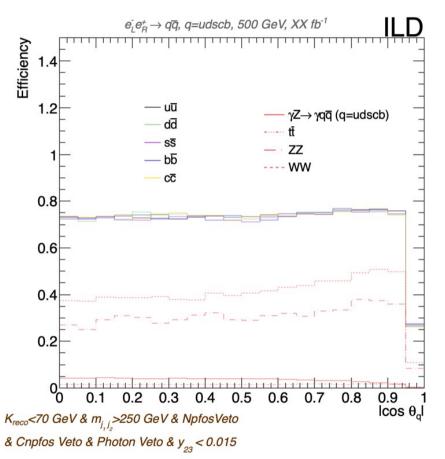


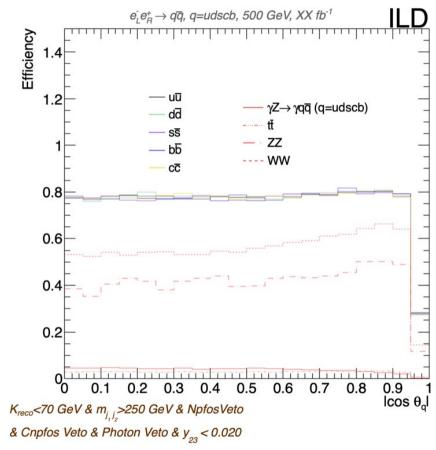
Looking for a sixth cut (d₂₃)


d₂₃ always induce flavour dependance

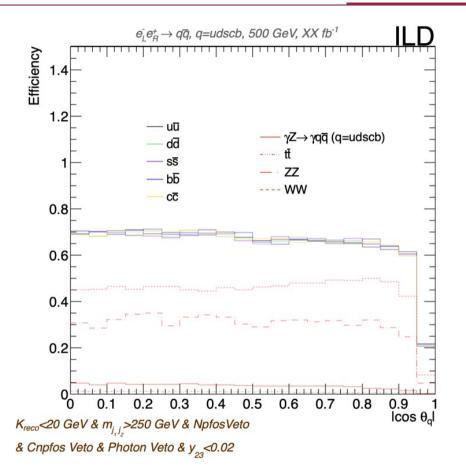

Jesús P. Márquez Hernández - ILD Top/HF group meeting 25/01/21

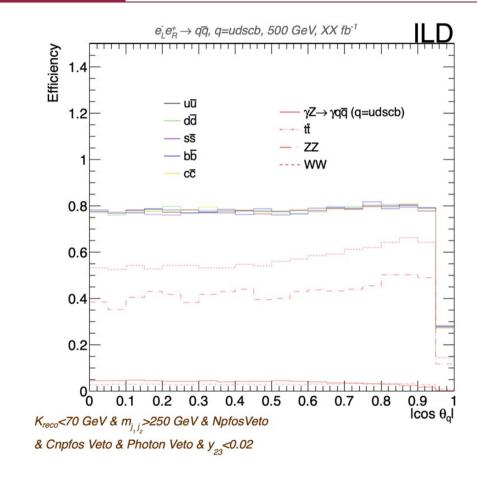
Looking for a sixth cut (y₂₃)





Looking for a sixth cut (y₂₃)





A

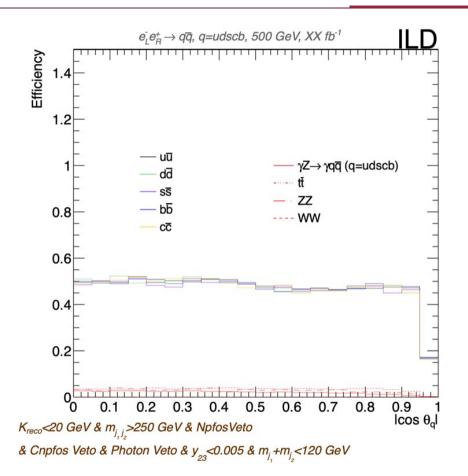
Cut y₂₃<0.02 for K_{reco}=20 & 70 GeV

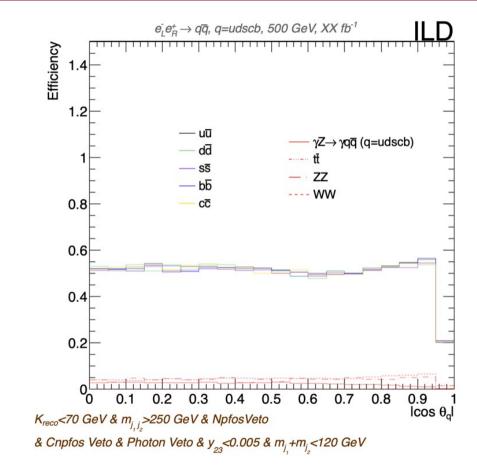
Cut y₂₃<0.02 for K_{reco}=20 & 70 GeV

K_{reco}<20 GeV

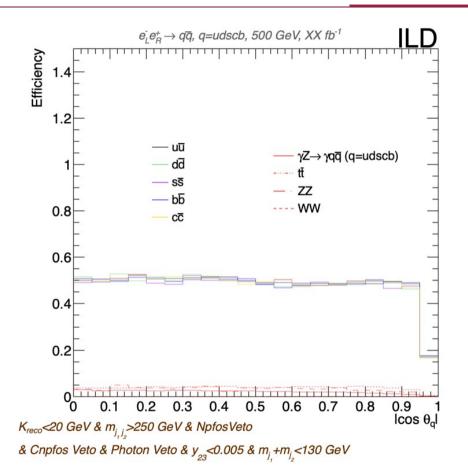
	Efficiency (%)			Background/Signal			
	$b ar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$tar{t}$
$y_{23} < 0.020$	63.7	63.4	63.2	0.13	0.52	0.034	0.001

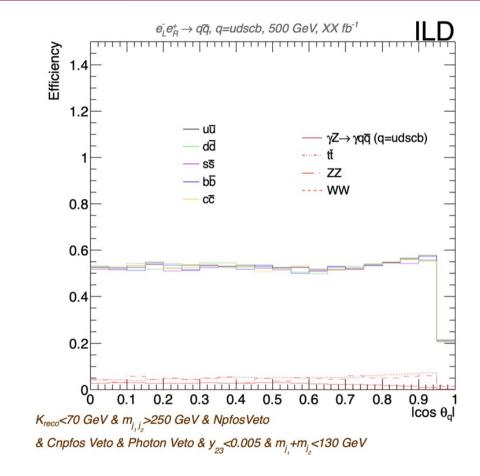
K_{reco}<70 GeV


	Efficiency (%)			Background/Signal			
	$b ar{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$tar{t}$
$y_{23} < 0.020$	74.7	74.5	74.3	0.09	0.52	0.04	0.0034

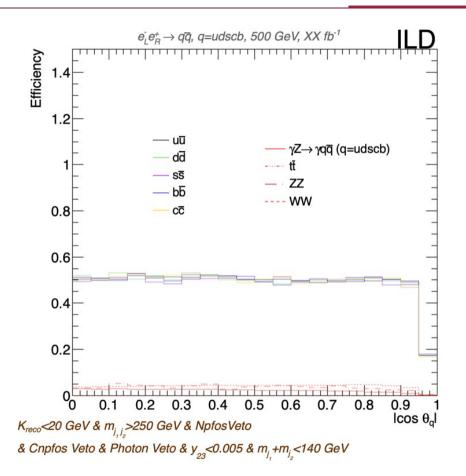

If we try to remove the slope using a milder cut in y_{23} we left way too much background

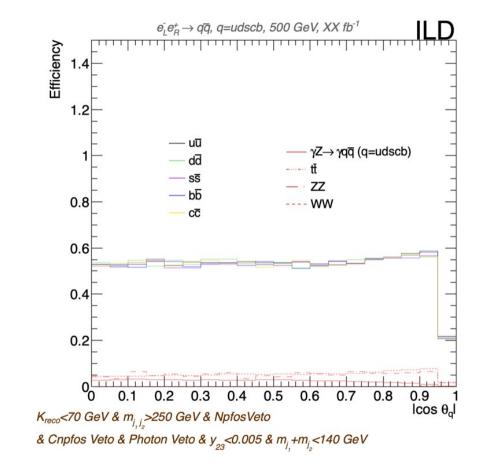
Seventh cut: m_{j1}+m_{j2}<120 GeV



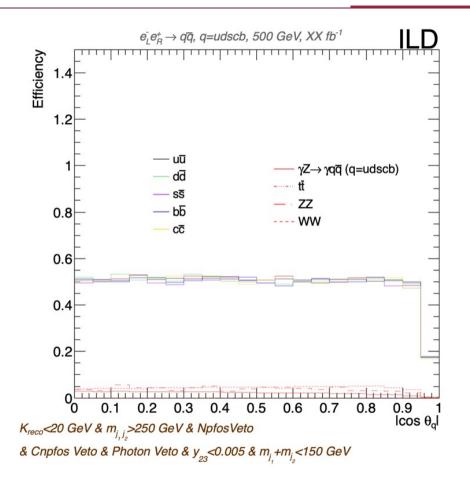


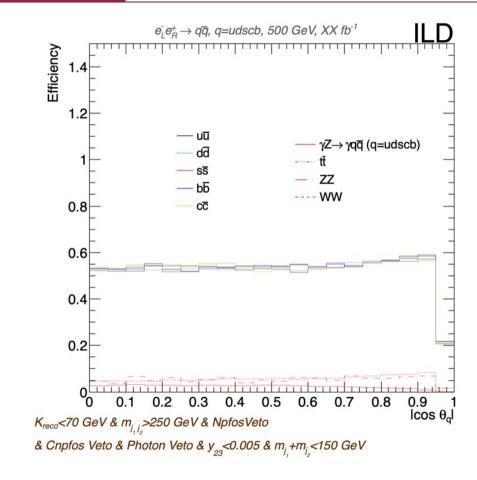
Seventh cut: m_{j1}+m_{j2}<130 GeV





Seventh cut: m_{j1}+m_{j2}<140 GeV





Seventh cut: m_{j1}+m_{j2}<150 GeV

