AFB studies at 500 GeV (update)

ILD Top/HF group meeting 25/01/22 A. Irles*, J. P. Márquez*

Orsay/Tohoku/Valencia HQ@ILC Team AITANA group at IFIC-CSIC/UV AITANA CSIC

Observables for BSM studies

• Forward-backward asymmetry:

$$A_{\rm FB} = \frac{\int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta}{\int_{-1}^1 \frac{d\sigma}{d\cos\theta} d\cos\theta}$$

• From theory to experiment, i.e., from cross-section to events:

$$N = L \cdot \sigma \cdot \epsilon$$

- Experimental definition:
 - Reduce bias from systematic errors from the luminosity and efficiency w.r.t. the cross-section observable

$$A_{FB}^{Exp} = \frac{N_F - N_B}{N_{Total}}$$

Gauge-Higgs Unification (GHU) Models

The GHU unified all the force carriers under a single gauge group:

.

- A-Models[1]: Stronger deviations in the right-handed case ($e_{R}e_{L}^{+}->q\overline{q}$).
- B-Models[2]: Stronger deviations in the left-handed case ($e_Le_R^+ > q\overline{q}$).
 - The gauge group of GHU is also related to Grand Unification Theory (GUT), embedded in the SO(11) group.

Shuichiro Funatsu, Hisaki Hatanaka, Yutaka Hosotani, Yuta Orikasa, and Naoki Yamatsu. Fermion pair production at e-e+ linear collider experiments in GUT inspired gauge-Higgs unification. Phys. Rev. D, 102(1):015029, 2020.
Shuichiro Funatsu, Hisaki Hatanaka, Yutaka Hosotani, and Yuta Orikasa. Distinct signals of the gauge-Higgs unification in e-e+ collider experiments. Phys. Lett. B, 775:297–302, 2017.

Gauge-Higgs Unification (GHU) Models

• A-Model cross-section deviation examples (c-quark) 500 GeV:

Preselection of q\overline{q} signals

- Once we have the reconstructed plos of the events with different targets:
 - We cluster the signal in jets (VLC algorithm):
 - The algorithm packs together the PFOs into two jets.
 - Signal is expected in a back-to-back topology (but not the backgrounds!)
 - Most of the background is radiative return (yqq)
 - And most of the data is background!
 - x3 for $e_{L}^{-}e_{R}^{+}$ and x6 for $e_{R}^{-}e_{L}^{+}$ at 250 GeV
 - x4 for $e_{L}^{-}e_{R}^{+}$ and x7 for $e_{R}^{-}e_{L}^{+}at$ 500 GeV
 - Then we apply different cuts to the signal to remove the background processes

Summary from the last meeting (e_Lp_R)

Summary from the last meeting (e_Rp_L)

vs the angular distribution of the two jet system (up to cut 6)

Samples (500 GeV)

e_L**p**_R

Luminosity (fb^{-1})						
$qar{q} + ext{ISR}$	WW	ZZ	$t \overline{t}_1$			
46.4	49.0	56.6	7704.9			

Cross-Section (fb)									
$qar{q} + ext{ISR} \mid ext{WW} \mid ext{ZZ} \mid tar{t}_1$									
32470.5	32470.5 7680 680.2 165.0								

e_R**p**_L

Luminosity

WW

500

 $q\bar{q} + ISR$

47.0

 (fb^{-1})

ZZ

72.5

)	Cross	s-Sectio	n (fb)	
$t\bar{t}_1$	$qar{q}+\mathrm{ISR}$	WW	ZZ	$t\bar{t}_1$
8354.1	17994.7	33.5	271.9	63.7

KISR<20 GeV

		Cross-Section (fb)									
	$b\overline{b}$	$c\bar{c}$	$s \overline{s}$	$u \bar{u}$	$d ar{d}$						
$q\bar{q}$	1051.6	1633.1	1051.5	1643.5	1058.2						
ISR	5391.9	4933.3	5389.0	4951.9	5366.6						
Ratio	5.1	3	5.1	3	5.1						

KISR<70 GeV

		Cross-Section (fb)								
	$b\bar{b}$	$c\overline{c}$	$s \overline{s}$	$u \bar{u}$	$d \bar{d}$					
$q\bar{q}$	1231.3	1917.3	1232.2	1923.5	1239.9					
ISR	5212.2	4649.1	5208.4	4671.8	5184.9					
Ratio	4.2	2.4	4.2	2.4	4.2					

K_{ISR}<20 GeV Cross-Section (fb) $b\overline{b}$ $d\bar{d}$ $c\overline{c}$ $s\overline{s}$ $u\bar{u}$

$q\bar{q}$	226.6	733.0	221.7	732.8	224.1
ISR	3233.5	3092.5	3222.5	3075.0	3243
Ratio	14.2	4.2	14.5	4.2	14.5

KISR<70 GeV

		Cros	s-Section	(fb)	
	$b\overline{b}$	$c\bar{c}$	$s\bar{s}$	$u ar{u}$	$d \bar{d}$
$q \bar{q}$	264.7	857.9	260.1	857.5	263.7
ISR	3185.4	2967.7	3184.1	2950.3	3203.5
Ratio	12.0	3.5	12.2	3.4	12.1

1: There are 4 different samples (for different processes), this is the average number for each of them

9

K_{reco} < 20 GeV

	Effic	Efficiency (%)			Background/Signal			
	$b\overline{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t \overline{t}$	
No cut	100	100	100	4.04	1.19	0.11	0.11	
+ Cut 1	70.9	70.5	70.8	0.87	0.78	0.06	0.007	
+ Cut 2	70.8	70.5	70.8	0.86	0.78	0.06	0.007	
+ Cut 3	70.7	70.4	70.5	0.24	0.79	0.06	0.007	
+ Cut 4	70.7	70.3	70.0	0.20	0.79	0.06	0.007	
+ Cut 5	68.5	68.1	67.6	0.14	0.61	0.05	0.007	

K_{reco} < 70 GeV

	Efficiency (%)			Background/Signal			
	$b\overline{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t \overline{t}$
No cut	100	100	100	3.30	1.19	0.11	0.11
+ Cut 1	94.6	94.3	94.3	0.95	1.07	0.09	0.062
+ Cut 2	94.2	94.1	94.2	0.91	1.07	0.09	0.057
+ Cut 3	94.1	93.9	93.7	0.24	1.07	0.09	0.058
+ Cut 4	94.0	93.8	93.0	0.18	1.07	0.09	0.058
+ Cut 5	90.0	89.6	88.6	0.11	0.69	0.07	0.060

Higher statistic

Similar B/S

Higher flavour differences

Jesús P. Márquez Hernández - ILD Top/HF group meeting 25/01/21

12

We retouched the cuts for K_{reco}=70 (e_Lp_R)

Now, we carry on the analysis looking in the $e_L p_R$ case

Looking for a sixth cut (y₂₃)

Cut y₂₃<0.005 for K_{reco}=20 & 70 GeV

K_{reco}<20 GeV

	Efficiency (%)			Background/Signal			
	$b\bar{b}$ $c\bar{c}$ $q\bar{q}$				WW	ZZ	$t ar{t}$
$y_{23} < 0.005$	48.6	48.7	48.7	0.10	0.09	0.007	0.0001

K_{reco}<70 GeV

	Efficiency (%)			E	Backgro	und/Sig	gnal
	$b\bar{b}$ $c\bar{c}$ $q\bar{q}$		ISR	WW	ZZ	$t \overline{t}$	
$y_{23} < 0.005$	52.9	52.6	52.6	0.08	0.11	0.010	0.0002

Looking for a seventh cut (m_{j1}+m_{j2})

Seventh cut: m_{j1}+m_{j2} (k_{reco}<20 GeV)

	Efficiency (%)			Background/Signal				
$m_{j_1} + m_{j_2} < X \text{ GeV}$	$b\overline{b}$	$c\overline{c}$	$q\bar{q}$	ISR	WW	ZZ	$t \overline{t}$	
120	45.9	45.9	45.8	0.10	0.05	0.004	2e-06	
130	47.0	47.1	47.1	0.10	0.05	0.004	3e-06	
140	47.6	47.8	47.8	0.10	0.06	0.005	5e-06] ◀—
150	48.0	48.3	48.2	0.10	0.06	0.005	8e-06]

|cos(θ)|<0.9

	Effic	ciency	(%)	Background/Signal				
$m_{j_1} + m_{j_2} < X \text{ GeV}$	$b\overline{b}$	$c\overline{c}$	$q \bar{q}$	ISR	WW	ZZ	$tar{t}$	
120	48.4	48.5	48.3	0.10	0.04	0.003	2e-06	
130	49.5	49.9	49.7	0.10	0.04	0.004	4e-06	
140	50.2	50.6	50.5	0.10	0.05	0.004	6e-06	
150	50.6	51.1	50.9	0.10	0.05	0.004	9e-06]

A

Seventh cut: m_{j1}+m_{j2} (k_{reco}<70 GeV)

	Effic	ciency	(%)	Background/Signal				
$\boxed{m_{j_1} + m_{j_2} < X \text{ GeV}}$	$b\bar{b}$	$c\overline{c}$	$q \bar{q}$	ISR	WW	ZZ	$t \bar{t}$	
120	49.7	49.5	49.5	0.08	0.07	0.006	4e-06	
130	50.8	50.8	50.9	0.08	0.08	0.007	7e-06	
140	51.5	51.6	51.7	0.08	0.08	0.007	9e-06] ←
150	51.9	52.0	52.1	0.10	0.08	0.007	1e-05]

|cos(θ)|<0.9

	Effic	ciency	(%)	Background/Signal				
$m_{j_1} + m_{j_2} < X \text{ GeV}$	$b\overline{b}$	$c\overline{c}$	$q\bar{q}$	ISR	WW	ZZ	$tar{t}$	
120	51.7	51.8	51.7	0.08	0.04	0.004	3e-06	
130	52.9	53,2	53.1	0.08	0.05	0.005	7e-06	
140	53.7	53.9	53.9	0.08	0.05	0.005	8e-06	
150	54.1	54.4	54.4	0.08	0.05	0.005	1e-05	

Final selection for K_{reco}=20 GeV (e_Lp_R)

Final selection for K_{reco}=20 GeV (e_Rp_L)

Final selection for K_{reco}=70 GeV (e_Lp_R)

We have to check this weird behavior at high angles with new samples

Final selection for K_{reco}=70 GeV (e_Lp_R)

Back-Up slides

Gauge-Higgs Unification (GHU) Models

• B-Model cross-section deviation examples (b-quark) 500 GeV:

Prospects for b-quark in GHU (AFB)

A

Prospects for c-quark in GHU (AFB)

A

Efficiency up to cut 6 (previous meeting)

elbr

	Efficiency (%)									
	$b\overline{b}$	$c\bar{c}$	$q \bar{q}$	ISR	WW	ZZ				
Cut 1	70.9	70.5	70.8	15.2	46.5	39.3				
+ Cut 2	70.8	70.5	70.8	15.1	46.4	39.3				
+ Cut 3	70.7	70.4	70.5	4.2	46.4	39.2				
+ Cut 4	70.7	70.3	70.0	3.2	46.3	39.1				
+ Cut 5	68.5	68.0	67.3	2.2	34.9	32.5				
+ Cut 6	51.1	51.2	50.9	1.3	5.3	4.3				

erpl

	Efficiency (%)									
	$b\overline{b}$	$c\bar{c}$	$q \bar{q}$	ISR	WW	ZZ				
Cut 1	70.6	70.7	71.0	15.3	63.8	40.4				
+ Cut 2	70.5	70.7	71.0	15.1	63.7	40.3				
+ Cut 3	70.5	70.6	70.7	3.3	63.7	40.3				
+ Cut 4	70.4	70.6	70.2	2.2	63.6	40.1				
+ Cut 5	68.3	68.2	67.6	1.28	62.8	33.0				
+ Cut 6	51.4	51.3	50.9	0.7	2.7	5.1				

Optimization of the cuts: K_{reco}

- K_{reco} is a good estimator of E_{y} :
 - Definition of acolinearity:

$$\sin \Psi_{acol} = \frac{\vec{p_{j_1}} \times \vec{p_{j_2}}}{|\vec{p_{j_1}}| \cdot |\vec{p_{j_1}}|}$$

• Momentum of the collinear photon in the ultrarrelativistic limit ($m_{jets} \ll p_{jets}$):

$$|\vec{k}| \approx K_{reco} = \frac{250 \,\text{GeV} \cdot \sin \Psi_{acol}}{\sin \Psi_{acol} + \sin \theta_1 + \sin \theta_2}$$

Kinematics of a two jets system reconstruction with ISR

Samples (500 GeV)

- The samples names are:
 - qq+ISR: 2f_hadronic
 - WW: 4f_WW_hadronic
 - ZZ: 4f_ZZ_hadronic
 - tī:
 - 6f_ttbar_yycyyc
 - 6f_ttbar_yycyyu
 - 6f_ttbar_yyuyyc
 - ► 6f_ttbar_yyuyyu

Looking for a sixth cut (d₂₃)

Looking for a sixth cut (d₂₃)

Looking for a sixth cut (d₂₃)

Looking for a sixth cut (y₂₃)

Low y₂₃ induces a positive slope

Looking for a sixth cut (y₂₃)

Cut y₂₃<0.02 for K_{reco}=20 & 70 GeV

Cut y₂₃<0.02 for K_{reco}=20 & 70 GeV

Kreco<20 GeV

	Effic	ciency	(%)	В	ackgrou	und/Sig	nal
	$b\overline{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t\bar{t}$
$y_{23} < 0.020$	63.7	63.4	63.2	0.13	0.52	0.034	0.001

K_{reco}<70 GeV

	Effic	ciency	(%)	В	ackgrou	und/Si	gnal
	$b\overline{b}$	$c\bar{c}$	$q\bar{q}$	ISR	WW	ZZ	$t \bar{t}$
$y_{23} < 0.020$	74.7	74.5	74.3	0.09	0.52	0.04	0.0034

If we try to remove the slope using a milder cut in y_{23} we left way too much background

Seventh cut: m_{j1}+m_{j2}<120 GeV

Seventh cut: m_{j1}+m_{j2}<130 GeV

Seventh cut: m_{j1}+m_{j2}<140 GeV

Seventh cut: m_{j1}+m_{j2}<150 GeV

