

Update on Geant4

Lorenzo Pezzotti, Alberto Ribon CERN EP-SFT

10 years of development: G4 9.6 – 11.0

Geant4 **9.6** (2012)

- Several extensions and improvements of BERT model
 - Changed internal nucleon-nucleon cross sections
 - Extended to gamma-nuclear interactions
 - Extended to nuclear capture at rest
- Replacement of CHIPS with FTFP and BERT models
 - For gamma-nuclear and lepton-nuclear
 - For nuclear capture at rest
- INCLXX (alternative, precise intra-nuclear cascade model)
 - For pions, nucleons and light ions projectiles
 - From ~100 MeV up to ~3 GeV
 - Available in the physics list QGSP_INCLXX

Geant4 **10.0** (2013)

- Improved neutron capture (without NeutronHP)
 - FTFP_BERT becomes closer to FTFP_BERT_HP
 - Strongest effect for Tungsten
- Further improvements of BERT
 - 2-body angular distribution
 - Phase-space generation for multi-body final states
- Extended Fritiof (FTF) string model to nucleus-nucleus
- Removed CHIPS and parametrized (Gheisha-like) models
 - Replaced by FTFP and BERT (already in G4 9.6)
- Extensions of reference physics lists
 - All EM variants (e.g. _EMZ) available through G4PhysListFactory
 - Various INCLXX possibilities: FTFP INCLXX, QGSP INCLXX HP, etc.

Geant4 **10.1** (2014)

- Thin-target improvements of Fritiof (FTF) string model
 - Minor impact on hadronic showers
- Improved string fragmentation of Quark Gluon String (QGS)
 - Large effect on hadronic showers
 - Lower energy response and bigger (wider and longer) showers
- INCLXX extended up to 20 GeV
 - INCLXX-based physics lists use FTF or QGS above 15 GeV
- Others
 - Switched on muon-nuclear by default in all physics lists
 - For physics lists with NeutronHP, set to zero the cut on proton
 - To simulate all nuclear recoils from elastic scattering

Geant4 **10.2** (2015)

- Improved treatment of excited nuclear remnants in FTF model
 - Affecting the production of low-energy protons and neutrons
 - Improved thin-target agreement, few percent increase in energy response of hadronic showers
- Important fix in inelastic and capture neutron cross sections
 - Affecting the lateral shapes (narrowing) of hadronic showers
 - FTFP_BERT and FTFP_BERT_HP getting closer
- Improved gamma emissions by nuclear de-excitation
- Improved energy conservation in radioactive decays
- ParticleHP
 - Include NeutronHP (precise transportation of neutrons below 20 MeV)
 - Extension for proton, deuteron, triton, He3 and alpha below 200 MeV
 - New data set G4TENDL based on ENDF and TALYS
 - Used only in QGSP BIC AllHP

Geant4 **10.3** (2016)

- Improved evaporation spectrum of BERT model
 - Reduced over-production of low-energy neutrons and protons
- Changed transition energy between FTFP and BERT
 - From [4, 5] GeV to [3, 12] GeV for pions, kaons, and nucleons
- Not released developments in FTF and QGS string models
 - Improved thin-target description but worse hadronic showers
 - *E.g.* higher energy response and narrower showers
 - Motivated by the need of the LHC experiments to have stable simulation of hadronic showers during Run 2
 - Important for the simulation of jets
 - Released so-called "stable/production" version of string models, developments available in the beta release, 10.3.beta

Geant4 **10.4** (2017)

- EM Opt4 (_EMZ) has state-of-the-art multiple scattering
 - Goudsmit-Saunderson (GS) model with Mott correction
- Extended INCLXX to the strangeness sector
 - Handling of kaons and hyperons projectiles, and production of secondary kaons and hyperons
- New combined (LEND+BERT) gamma-nuclear model
 - Use LEND data for gammas below 20 MeV if available, BERT for the rest
- Enabled production and transport of long-lived isomers
 - Before (and now for isomers below a time threshold), force prompt decay to ground state
- New, experimental physics list FTFQGSP_BERT
 - FTF-based string formation and QGS-based string fragmentation
- Not released developments in FTF and QGS string models
 - Improved thin-target description but worse (higher) energy response in showers
 - Released so-called stable/production version of string models to keep stable hadronic showers 8
 - Developments available in the beta release, 10.4.beta

Geant4 **10.5** (2018)

- Revised gamma conversion and electron/positron bremsstrahlung models
 - Improved screening function, LPM effect, angular generation, and sampling efficiency
 - Better EM lateral shower shapes
- Released new version of FTF and QGS string models
 - Developed since the last three years (i.e. after G4 10.2) and kept on hold to guarantee stable hadronic showers for ATLAS and CMS
 - Better thin-target description, wider hadronic showers, but few percent higher response and smaller energy fluctuations in hadronic showers
 - Also few percent higher energy response in EM showers, due to improved back-scattering treatment in Urban multiple scattering model (which becomes closer to GS model and data)
 - New Birks quenching treatment recommended
 - Fit Birks coefficient from π /e test-beam data
 - QGS model becomes competitive with FTF above ~20 GeV
- Extended strange pair production channels in BERT model
- Consolidation of INCLXX model

Geant4 **10.6** (2019)

- Improved hadronic cross sections
 - Revised all hadron-nucleon cross sections at low energies
 - Extended Glauber-Gribov cross sections for hyperons and anti-hyperons
 - Gheisha-like cross sections are not used any longer
- Changed transition energy between string and cascade models
 - From [3, 12] GeV to [3, 6] GeV (transiton between FTF and QGS unchanged: [12, 25] GeV)
 - Consistently for all projectile particle types
 - Not only for charged pions, kaons, and nucleons: also for hyperons (instead of [2, 6] GeV), ions (instead of [2, 4] GeV/nucleons), and gammas (instead of [3, 3.5] GeV)
 - Not for FTFP_BERT_ATL, FTFP_INCLXX, QGSP_INCLXX, NuBeam, ShieldingM
- Validation and refinement of nucleus-nucleus modeling in FTF
- Added Radioactive Decay to all HP-based physics lists
 - This was already the case only for Shielding, LBE, QGSP_BIC_HP, QGSP_BIC_AllHP
- New neutron data library G4NDL4.6
 - Mostly based on JEFF-3.3: more isotopes and better agreement with MCNP

Geant4 **10.7** (2020)

- Included charm and bottom hadron nuclear interactions
 - EM interactions (ionization & multiple scattering) already present before
 - Extension in: hadronic (elastic and inelastic) cross sections, elastic scattering, and string models (FTF and QGS)
 - Simplified decay treatment; no cascade model: FTF used down to 100 MeV, and below simplified treatment; usual transition between FTF and QGS: [12, 25] GeV
- Extended usage of QGS in QGS-based physics lists
 - For hyperons, anti-hyperons, anti-proton and anti-neutron above 12 GeV
- New gamma-nuclear final-state model below 200 MeV
 - Based on pre-compound de-excitation (BERT used above 199 MeV)
 - G4LowEGammaNuclearModel : can produce isomers and gamma transitions
- Optional scaling factors for elastic and inelastic hadronic cross sections
 - For studies of systematic uncertainties
 - 3 categories of hadrons: nucleons, charged pions, all others

Geant4 **11.0** (2021)

- Opportunities of a new major release
 - Removed old classes (e.g. Gheisha cross sections, old ion cross sections, old utilities), old interfaces, old UI commands, etc.
 - Replaced old, deprecated environmental variables used in ParticleHP with corresponding new UI commands
- Major improvement in the treatment of thermal neutrons in ParticleHP
 - Neutrons with Ekin < 4 eV solved long-standing disagreement with MCNP
- New gamma-nuclear cross section
 - Better treatment of the Giant Dipole Resonance region (0-130 MeV)
 - G4GammaNuclearXS, based on IAEA evaluated photo-nuclear library
- New cut to kill very late radioactive decays at rest
 - Decays happening later than a time-threshold (default: 10²⁷ ns)
 - To prevent energy depositions happening after billions of years in ordinary materials used in calorimetry such as W and Pb, due to natural, unstable but long-lived isotopes such as W183, W180, and Pb204

Geant4 Versions and Physics Validation

Recommended Geant4 Version

- The recommended version is the latest, public release: as of today, Geant4 11.0.p01
 - Take advantage, at least, of the latest bug fixes and speed-ups
 - Typically a few percent with respect to the previous version
 - Moreover, latest developments in physics models
 - Often (but not always) improving the physics accuracy of the simulation,
 e.g. treatment of thermal neutrons
- Besides G4 11.0, we are still supporting the G4 10.7 series, with **10.7.p03** the latest patch available
- We are no longer fixing bugs for G4 10.6 and earlier versions!
- Minor versions, **11.{1**, **2**, *etc.*} expected in the next few years
 - December releases + patches of recent releases

Physics Validation

- The physics validation of Geant4 as done by CALICE and the LHC experiments – provides a snapshot of the accuracy of physics models for a given version of Geant4
 - A fundamental feedback for the models' developers
 - In general, the smaller is the gap between the version of a model that has been validated and its current (development) version, the more useful it is for its developers
 - Even more useful would be to re-run the validation for variations of a given model *e.g.* including new effects, changing algorithms, or modifying parameters, *etc.* well before a new Geant4 release
 - Keep in mind that Geant4 is used in production by several experiments,
 therefore it is not possible to make "explorative changes" in public releases...
 - ==> One of the main benefits of porting validations in **geant-val**!

Physics Lists for HEP

Recommended Physics List for HEP: FTFP_BERT

- Used (eventually with variants) by the four big LHC experiments
 - ALICE uses FTFP_BERT, with INCLXX in the Tracker region
 - To get better production (with respect to BERT) of light ions in the beam pipe and inner tracker region via spallation by primary hadrons (pions and nucleons)
 - Using FTFP_INCLXX would cost a factor of 2 slow down in the simulation
 - It is possible to get "hadronic-model per region" by using generic biasing (see examples/extended/hadronic/Hadr08/)
 - ATLAS uses FTFP_BERT_ATL
 - Transition energy between FTFP and BERT in [9, 12] GeV
 - For charged pions, kaons, protons and neutrons introduced in G4 10.2
 - CMS uses FTFP_BERT
 - With energy transition for charged **pions** in **[3, 12]** GeV
 - For all other particle types, standard transition [3, 6] GeV
 - LHCb uses plain FTFP BERT

Tuning of Birks coefficient

- For scintillator-based calorimeters, the coefficient used for Birks quenching was obtained from old measurements, by fitting under the assumption of no delta-ray emissions
 - *i.e.* assuming that "energy loss" == "local deposited energy"
- This implies that the ionization density, dE/dx, was overestimated, and therefore the Birks coefficient was underestimated
- So, in realistic simulations where delta-rays are emitted, a higher Birks coefficient and therefore a stronger quenching should be applied, which implies smaller visible energy
- We suggest to **fit** the Birks coefficient by imposing the π *le* ratio in simulation to be the same as measured in test-beam
 - ~ +50% in ATLAS TileCal (Fe-Sci), ~ +20% in ATLAS HEC (Cu-LAr)
 - ~ +15% in CMS HCAL (Cu-Sci)

"_**HP**" and "_**EMZ"** Variants

- FTFP_BERT_HP allows to evaluate how much the results depend on precise transportation of low-energy neutrons
 - Neutrons with kinetic energy below 20 MeV
 - With a significant slow-down of the simulation speed
 - Worth trying out at least for scintillator-based calorimeters
- FTFP_BERT_EMZ allows to evaluate how much the results depend on the most precise treatment of electromagnetic physics in Geant4
 - Recommended EM option for medical physics and space science
 - In particular, it has a state-of-the-art multiple scattering treatment (GS model + Mott correction)
 - With a significant slow-down of the simulation speed
 - Worth trying out for very granular calorimeters and/or gas-based calorimeters
 - It can affect the energy response and/or the lateral shape of electromagnetic showers

Hadronic String models: QGS vs. FTF

- In recent versions of Geant4 (10.6, 10.7, 11.0), QGS model becomes competitive with respect to FTF above ~20 GeV
 - In QGSP_BERT physics list, we use: FTF below 25 GeV QGS above 12 GeV

Reminder: QGSP_BERT was the physics lists used by the LHC experiments during the Run 1 (e.g. for the Higgs discovery);

FTFP_BERT started to be used during the Run 2

- Hadronic showers: QGSP_BERT vs. FTFP_BERT
 - Few percent higher energy response
 - Wider energy fluctuation and worse (less optimistic) energy resolution
 - Few percent longer showers
 - 5-10% narrower showers

Hadronic Shower Simulations

Thin Target vs. Hadronic Showers

- Until Geant4 version 9.6, progress at thin-target level translated directly into progress in the simulation of hadronic showers
 - Reduced use of parametrized (Gheisha-like) model
 - Thorough revision of the Fritiof (FTF) string model
 - Improvements of Bertini (BERT) intra-nuclear cascade model
- With the Geant4 version 10.x series, progress at thin-target level produced often hadronic showers in tension with test-beam data
 - In particular regarding the energy response: developments pushed this
 quantity to increase, while test-beam data favoured lower values...
 - Even replacing BERT with more precise intra-nuclear cascade models, such as BIC or INCLXX, pushes towards higher energy responses in hadronic showers...
 - Some developments also caused the simulated hadronic showers to be narrower, whereas test-beam data favoured wider showers...

Why Tension between Thin- vs. Thick-target?

- Various possibilities including a combination of them
 - Thin-target improvements in some phase space regions where we look or pay more attention – but perhaps worsening in others which might be important for hadronic showers
 - Thin-target data are richer in light materials (e.g. Be, C, Al, Si), whereas heavier materials (e.g. Fe, Cu, W, Pb) are more important for calorimetry
 - Current hadronic models might approach their ultimate physics accuracy capabilities – simplified, approximated treatments, not derived from QCD
 - Too naive tunings of hadronic model parameters done mostly one parameter at the time, neglecting correlations
 - Incorrect Birks quenching

•

Future Directions

- Enrich as much as possible the set of **thin-target data**, as well as the set of **calorimeter test-beams data** in **geant-val**
- Better tuning of FTF model parameters
 - Correlated variations (e.g. using tools like Professor), different set of parameters according to particle type and/or particle energy, etc.
- Explore the best combination of the 3 intra-nuclear cascade models – BERT, BIC, INCLXX – in physics lists
 - Energy response seems the main difficulty to overcome...
- Optimize energy transitions between hadronic models
- Continue the development and refinement of physics models
- Synergies with the FLUKA-Cern group

Other Geant4-related Activities

HL-LHC Simulation Challenges

- HL-LHC experiments will need better (i.e. more accurate) and larger simulation samples than ever before
 - Else systematic errors will dominate
- The simulation of electromagnetic showers in calorimeters take a large fraction of the computing resources of experiments
 - Even hadronic showers are dominated by their EM component
 - From the decays of neutral pions into two gammas
- Large effort to speed-up simulations
 - Looking at electromagnetic physics, transportation, and geometry
 - Hadronic physics is **not** a leading player for CPU performance!
 - Goal: full (high fidelity) simulations as fast as possible, and fast (low fidelity) simulations as accurate as possible

On-going Activities

- Improvements and Optimizations
 - Model refinements, code revisions, better algorithms, more efficient memory layout, etc.
 - G4HepEm, Gamma General process, Woodcock tracking, DPM-like approach, etc.
- Fast Simulation
 - Improve and extend traditional HEP techniques
 - Shower parameterizations and shower libraries
 - Machine Learning generation of showers
- R&D on Accelerators and new Architectures
 - GeantV
 - AdePT and Celeritas: GPU prototypes for realistic EM shower simulations
 - Community meeting 3-6 May: https://indico.cern.ch/event/1123314/

Conclusions

Summary and Outlook

- Progress in Geant4 is continuing... but it is a bumpy road!
- Precise, reliable validation data is paramount
 - CALICE plays an important role here! Thanks a lot for your contributions!
- Three main challenges
 - More accurate physics simulations
 - Some physics analyses need the best detailed simulations; for others, faster, lower-fidelity approaches would suffice if similar enough to high-fidelity simulations
 - Even fast simulation needs full simulation samples for tuning / training
 - Faster simulations
 - Full simulation as much as possible, fast simulation as much as needed
 - Efficient use of available computing resources
 - Finding, training and keeping a new generation of developers
 - Many key developers of Geant4 are getting old...