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10 years of development :
G4 9.6 – 11.0
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Geant4 9.6 (2012) 
● Several extensions and improvements of BERT model

● Changed internal nucleon-nucleon cross sections
● Extended to gamma-nuclear interactions
● Extended to nuclear capture at rest

● Replacement of CHIPS with FTFP and BERT models
● For gamma-nuclear and lepton-nuclear
● For nuclear capture at rest

● INCLXX (alternative, precise intra-nuclear cascade model)
● For pions, nucleons and light ions projectiles
● From ~100 MeV up to ~3 GeV
● Available in the physics list QGSP_INCLXX
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Geant4  10.0 (2013) 
● Improved neutron capture (without NeutronHP)

● FTFP_BERT becomes closer to FTFP_BERT_HP
● Strongest effect for Tungsten

● Further improvements of BERT
● 2-body angular distribution
● Phase-space generation for multi-body final states 

● Extended Fritiof (FTF) string model to nucleus-nucleus
● Removed CHIPS and parametrized (Gheisha-like) models

● Replaced by FTFP and BERT (already in G4 9.6)

● Extensions of reference physics lists
● All EM variants (e.g. _EMZ) available through G4PhysListFactory
● Various INCLXX possibilities: FTFP_INCLXX, QGSP_INCLXX_HP, etc.
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Geant4  10.1 (2014) 
● Thin-target improvements of Fritiof (FTF) string model

● Minor impact on hadronic showers
● Improved string fragmentation of Quark Gluon String (QGS)

● Large effect on hadronic showers
– Lower energy response and bigger (wider and longer) showers

● INCLXX extended up to 20 GeV
● INCLXX-based physics lists use FTF or QGS above 15 GeV

● Others
● Switched on muon-nuclear by default in all physics lists
● For physics lists with NeutronHP, set to zero the cut on proton

– To simulate all nuclear recoils from elastic scattering
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Geant4  10.2 (2015) 
● Improved treatment of excited nuclear remnants in FTF model

● Affecting the production of low-energy protons and neutrons
– Improved thin-target agreement, few percent increase in energy response of hadronic showers

● Important fix in inelastic and capture neutron cross sections
● Affecting the lateral shapes (narrowing) of hadronic showers

– FTFP_BERT and FTFP_BERT_HP getting closer

● Improved gamma emissions by nuclear de-excitation
● Improved energy conservation in radioactive decays
● ParticleHP

● Include NeutronHP (precise transportation of neutrons below 20 MeV)
● Extension for proton, deuteron, triton, He3 and alpha below 200 MeV

– New data set G4TENDL based on ENDF and TALYS
– Used only in QGSP_BIC_AllHP
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Geant4  10.3 (2016) 
● Improved evaporation spectrum of BERT model

● Reduced over-production of low-energy neutrons and protons
● Changed transition energy between FTFP and BERT

● From  [4, 5] GeV  to  [3, 12] GeV  – for pions, kaons, and nucleons
● Not released developments in FTF and QGS string models

● Improved thin-target description but worse hadronic showers
– E.g. higher energy response and narrower showers

● Motivated by the need of the LHC experiments to have stable simulation
of hadronic showers during Run 2

– Important for the simulation of jets
● Released so-called “stable/production” version of string models, 

developments available in the beta release, 10.3.beta
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Geant4  10.4 (2017) 
● EM Opt4 (_EMZ) has state-of-the-art multiple scattering

● Goudsmit-Saunderson (GS) model with Mott correction

● Extended INCLXX to the strangeness sector
● Handling of kaons and hyperons projectiles, and production of secondary kaons and hyperons 

● New combined (LEND+BERT) gamma-nuclear model
● Use LEND data for gammas below 20 MeV if available, BERT for the rest

● Enabled production and transport of long-lived isomers
● Before (and now for isomers below a time threshold), force prompt decay to ground state

● New, experimental physics list FTFQGSP_BERT
● FTF-based string formation and QGS-based string fragmentation

● Not released developments in FTF and QGS string models
● Improved thin-target description but worse (higher) energy response in showers
● Released so-called stable/production version of string models to keep stable hadronic showers

● Developments available in the beta release, 10.4.beta
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Geant4  10.5 (2018) 
● Revised gamma conversion and electron/positron bremsstrahlung models

● Improved screening function, LPM effect, angular generation, and sampling efficiency
– Better EM lateral shower shapes

● Released new version of FTF and QGS string models
● Developed since the last three years (i.e. after G4 10.2) and kept on hold to guarantee 

stable hadronic showers for ATLAS and CMS
● Better thin-target description, wider hadronic showers, but few percent higher response 

and smaller energy fluctuations in hadronic showers
– Also few percent higher energy response in EM showers, due to improved back-scattering treatment

in Urban multiple scattering model (which becomes closer to GS model and data)

● New Birks quenching treatment recommended
– Fit Birks coefficient from π/e test-beam data

● QGS model becomes competitive with FTF above ~20 GeV

● Extended strange pair production channels in BERT model
● Consolidation of INCLXX model
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Geant4  10.6 (2019) 
● Improved hadronic cross sections

● Revised all hadron-nucleon cross sections at low energies
● Extended Glauber-Gribov cross sections for hyperons and anti-hyperons
● Gheisha-like cross sections are not used any longer

● Changed transition energy between string and cascade models
● From  [3, 12] GeV  to  [3, 6] GeV   (transiton between FTF and QGS unchanged: [12, 25] GeV)

● Consistently for all projectile particle types
– Not only for charged pions, kaons, and nucleons: also for hyperons (instead of [2, 6] GeV), 

ions (instead of [2, 4] GeV/nucleons), and gammas (instead of [3, 3.5] GeV) 

● Not for FTFP_BERT_ATL, FTFP_INCLXX, QGSP_INCLXX, NuBeam, ShieldingM

● Validation and refinement of nucleus-nucleus modeling in FTF

● Added Radioactive Decay to all HP-based physics lists
● This was already the case only for Shielding, LBE, QGSP_BIC_HP, QGSP_BIC_AllHP

● New neutron data library G4NDL4.6
● Mostly based on JEFF-3.3 : more isotopes and better agreement with MCNP 



11

Geant4  10.7 (2020) 
● Included charm and bottom hadron nuclear interactions

● EM interactions (ionization & multiple scattering) already present before
● Extension in: hadronic (elastic and inelastic) cross sections, elastic scattering,

                     and string models (FTF and QGS)
– Simplified decay treatment; no cascade model: FTF used down to 100 MeV, and below simplified 

treatment; usual transition between FTF and QGS : [12, 25] GeV

● Extended usage of QGS in QGS-based physics lists
● For hyperons, anti-hyperons, anti-proton and anti-neutron above 12 GeV

● New gamma-nuclear final-state model below 200 MeV
● Based on pre-compound de-excitation (BERT used above 199 MeV)

– G4LowEGammaNuclearModel : can produce isomers and gamma transitions

● Optional scaling factors for elastic and inelastic hadronic cross sections 
● For studies of systematic uncertainties

– 3 categories of hadrons: nucleons, charged pions, all others



12

Geant4  11.0 (2021) 
● Opportunities of a new major release

● Removed old classes (e.g. Gheisha cross sections, old ion cross sections, old utilities), 
old interfaces, old UI commands, etc.

● Replaced old, deprecated environmental variables used in ParticleHP with 
corresponding new UI commands

● Major improvement in the treatment of thermal neutrons in ParticleHP
● Neutrons with Ekin < 4 eV – solved long-standing disagreement with MCNP

● New gamma-nuclear cross section
● Better treatment of the Giant Dipole Resonance region (0-130 MeV)

– G4GammaNuclearXS, based on IAEA evaluated photo-nuclear library 

● New cut to kill very late radioactive decays at rest
● Decays happening later than a time-threshold (default: 10^27 ns)

– To prevent energy depositions happening after billions of years in ordinary materials used in calorimetry 
such as W and Pb, due to natural, unstable but long-lived isotopes such as W183, W180, and Pb204 
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Geant4 Versions
and 

Physics Validation
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Recommended Geant4 Version 
● The recommended version is the latest, public release: 

as of today, Geant4 11.0.p01
● Take advantage, at least, of the latest bug fixes and speed-ups 

– Typically a few percent with respect to the previous version
● Moreover, latest developments in physics models

– Often (but not always) improving the physics accuracy of the simulation, 
e.g. treatment of thermal neutrons 

● Besides G4 11.0, we are still supporting the G4 10.7 series,
with 10.7.p03 the latest patch available

● We are no longer fixing bugs for G4 10.6 and earlier versions!
● Minor versions, 11.{1, 2, etc.} expected in the next few years

● December releases + patches of recent releases
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Physics Validation  
● The physics validation of Geant4 – as done by CALICE and the 

LHC experiments – provides a snapshot of the accuracy of 
physics models for a given version of Geant4

● A fundamental feedback for the models’ developers
● In general, the smaller is the gap between the version of a model that

has been validated and its current (development) version, the more 
useful it is for its developers

● Even more useful would be to re-run the validation for variations of a
given model − e.g. including new effects, changing algorithms, or 
modifying parameters, etc. − well before a new Geant4 release

– Keep in mind that Geant4 is used in production by several experiments,
therefore it is not possible to make “explorative changes” in public releases...

==>  One of the main benefits of porting validations in geant-val !
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Physics Lists for HEP
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Recommended Physics List for HEP: FTFP_BERT  
● Used (eventually with variants) by the four big LHC experiments

● ALICE uses FTFP_BERT, with INCLXX in the Tracker region
– To get better production (with respect to BERT) of light ions in the beam pipe and

 inner tracker region via spallation by primary hadrons (pions and nucleons)
● Using FTFP_INCLXX would cost a factor of 2 slow down in the simulation
● It is possible to get “hadronic-model per region” by using generic biasing 

(see  examples/extended/hadronic/Hadr08/ )

● ATLAS uses FTFP_BERT_ATL
– Transition energy between FTFP and BERT in [9, 12] GeV

● For charged pions, kaons, protons and neutrons ─ introduced in G4 10.2 

● CMS uses FTFP_BERT
– With energy transition for charged pions in [3, 12] GeV
– For all other particle types, standard transition [3, 6] GeV

● LHCb uses plain FTFP_BERT
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Tuning of Birks coefficient 
● For scintillator-based calorimeters, the coefficient used for Birks 

quenching was obtained from old measurements, by fitting under
the assumption of no delta-ray emissions

● i.e. assuming that “energy loss” == “local deposited energy”

● This implies that the ionization density, dE/dx, was overestimated, 
and therefore the Birks coefficient was underestimated

● So, in realistic simulations where delta-rays are emitted, a higher
Birks coefficient – and therefore a stronger quenching – should be
applied, which implies smaller visible energy

● We suggest to fit the Birks coefficient by imposing the π/e ratio in 
simulation to be the same as measured in test-beam

● ~ +50% in ATLAS TileCal (Fe-Sci), ~ +20% in ATLAS HEC (Cu-LAr)
● ~ +15% in CMS HCAL (Cu-Sci)
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 “_HP” and “_EMZ” Variants
● FTFP_BERT_HP allows to evaluate how much the results depend on 

precise transportation of low-energy neutrons
● Neutrons with kinetic energy below 20 MeV
● With a significant slow-down of the simulation speed
● Worth trying out at least for scintillator-based calorimeters

● FTFP_BERT_EMZ allows to evaluate how much the results depend on 
the most precise treatment of electromagnetic physics in Geant4

● Recommended EM option for medical physics and space science
– In particular, it has a state-of-the-art multiple scattering treatment (GS model + Mott correction)

● With a significant slow-down of the simulation speed
● Worth trying out for very granular calorimeters and/or gas-based calorimeters

– It can affect the energy response and/or the lateral shape of electromagnetic showers 
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Hadronic String models: QGS vs. FTF  
● In recent versions of Geant4 (10.6, 10.7, 11.0), QGS model becomes 

competitive with respect to FTF above ~20 GeV
● In QGSP_BERT physics list, we use: FTF below 25 GeV

                                                            QGS above 12 GeV

       Reminder: QGSP_BERT was the physics lists used by the LHC experiments                        
                         during the Run 1 (e.g. for the Higgs discovery); 
                         FTFP_BERT started to be used during the Run 2
  

● Hadronic showers: QGSP_BERT vs. FTFP_BERT
● Few percent higher energy response
● Wider energy fluctuation and worse (less optimistic) energy resolution
● Few percent longer showers
● 5-10% narrower showers
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 Hadronic Shower Simulations
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Thin Target vs. Hadronic Showers 
● Until Geant4 version 9.6, progress at thin-target level translated 

directly into progress in the simulation of hadronic showers
● Reduced use of parametrized (Gheisha-like) model
● Thorough revision of the Fritiof (FTF) string model
● Improvements of Bertini (BERT) intra-nuclear cascade model

● With the Geant4 version 10.x series, progress at thin-target level 
produced often hadronic showers in tension with test-beam data

● In particular regarding the energy response: developments pushed this 
quantity to increase, while test-beam data favoured lower values…

– Even replacing BERT with more precise intra-nuclear cascade models, such as BIC
or INCLXX, pushes towards higher energy responses in hadronic showers...

● Some developments also caused the simulated hadronic showers
to be narrower, whereas test-beam data favoured wider showers...
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Why Tension between Thin- vs. Thick-target ? 
● Various possibilities – including a combination of them

● Thin-target improvements in some phase space regions – where we look 
or pay more attention – but perhaps worsening in others which might be 
important for hadronic showers

● Thin-target data are richer in light materials (e.g. Be, C, Al, Si), whereas 
heavier materials (e.g. Fe, Cu, W, Pb) are more important for calorimetry

● Current hadronic models might approach their ultimate physics accuracy 
capabilities – simplified, approximated treatments, not derived from QCD

● Too naive tunings of hadronic model parameters – done mostly one 
parameter at the time, neglecting correlations

● Incorrect Birks quenching
● ...
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Future Directions 
● Enrich as much as possible the set of thin-target data, as well as 

the set of calorimeter test-beams data in geant-val
● Better tuning of FTF model parameters

● Correlated variations (e.g. using tools like Professor), different set of 
parameters according to particle type and/or particle energy, etc.

● Explore the best combination of the 3 intra-nuclear cascade 
models – BERT , BIC , INCLXX – in physics lists

● Energy response seems the main difficulty to overcome...
● Optimize energy transitions between hadronic models
● Continue the development and refinement of physics models
● Synergies with the FLUKA-Cern group
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Other Geant4-related Activities
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HL-LHC Simulation Challenges 
● HL-LHC experiments will need better (i.e. more accurate) and 

larger simulation samples than ever before
● Else systematic errors will dominate

● The simulation of electromagnetic showers in calorimeters take
a large fraction of the computing resources of experiments

● Even hadronic showers are dominated by their EM component
– From the decays of neutral pions into two gammas

● Large effort to speed-up simulations
● Looking at electromagnetic physics, transportation, and geometry

– Hadronic physics is not a leading player for CPU performance !
● Goal: full (high fidelity) simulations as fast as possible, and 

          fast (low fidelity) simulations as accurate as possible
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On-going Activities 
● Improvements and Optimizations

● Model refinements, code revisions, better algorithms, more efficient 
memory layout, etc.

– G4HepEm, Gamma General process, Woodcock tracking, DPM-like approach, etc.

● Fast Simulation
● Improve and extend traditional HEP techniques

– Shower parameterizations and shower libraries
● Machine Learning generation of showers

● R&D on Accelerators and new Architectures 
● GeantV
● AdePT and Celeritas : GPU prototypes for realistic EM shower simulations

– Community meeting 3-6 May:  https://indico.cern.ch/event/1123314/

https://indico.cern.ch/event/1123314/
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Conclusions
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Summary and Outlook  
● Progress in Geant4 is continuing… but it is a bumpy road!
● Precise, reliable validation data is paramount

● CALICE plays an important role here! Thanks a lot for your contributions!
● Three main challenges

● More accurate physics simulations
– Some physics analyses need the best detailed simulations; for others, faster, 

lower-fidelity approaches would suffice if similar enough to high-fidelity simulations
– Even fast simulation needs full simulation samples for tuning / training

● Faster simulations
– Full simulation as much as possible, fast simulation as much as needed
– Efficient use of available computing resources 

● Finding, training and keeping a new generation of developers
– Many key developers of Geant4 are getting old...
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