

Institute of High Energy Physics, Chinese Academy of Sciences

R&D Status of a Novel High Granularity Crystal Electromagnetic Calorimeter

Baohua Qi On behalf of CEPC Calorimeter Working Group

CALICE Collaboration Meeting at Valencia

April 20-22, 2022

Motivations

- Background: calorimeter for future lepton colliders (e.g. CEPC)
 - Precision measurements with Higgs and Z/W
 - Jet energy resolution of 3-4%@100GeV is required
 - Particle flow approach: high-granularity calorimeter
- Why crystal calorimeter?
 - Homogeneous structure
 - Intrinsic energy resolution: $\sim 3\%/\sqrt{E} \oplus \sim 1\%$
 - Energy recovery of electrons: to improve Higgs recoil mass
 - Capability to trigger single photons: precision γ/π^0 reconstruction
 - Focus on low energy particle measurement

Physics process	Measurands	Critical detector	Required performance
$ZH \rightarrow l^+ l^- X$	m_H, σ_{ZH}	Tracker	$\Delta(1/P_T) = 2 \times 10^{-5} \oplus \frac{10^{-3}}{P(GeV) \sin^{\frac{3}{2}\theta}}$
$H o \mu^+ \mu^-$	$B(H \to \mu^+ \mu^-)$		
$H o b\overline{b}, c\overline{c}, gg$	$B(H \to b\overline{b}, c\overline{c}, gg)$	Vertex	$\sigma_{r\phi} = 5 \oplus \frac{10}{p(GeV)\sin^{\frac{3}{2}}\theta} (\mu m)$
$H \to q\overline{q}, W^+W^-, ZZ$	$B(H \to q\overline{q}, W^+W^-, ZZ)$	Calo	$\sigma_E^{jet}=3\sim 4\%\ @100GeV$
$H ightarrow \gamma \gamma$	$B(H \to \gamma \gamma)$	ECAL	$\frac{\Delta E}{E} = \frac{0.20}{\sqrt{E (GeV)}} \oplus 0.01$

Overview of this report: R&D status

R&D of a novel highly granular crystal ECAL:

- PFA performance: key parameters
 - Evaluate physics potentials
 - Separation power, Higgs benchmark
- Reconstruction algorithm dedicated to new geometry design
 - Aims & challenges
 - Algorithm development & performance studies
- Detector design and performance
 - Detector units studies & requirements of hardware development
 - Crystal candidates: BGO / PWO
 - SiPM characterization: laser calibration
 - ¹³⁷Cs tests on long crystal bar: energy resolution & response uniformity
 - Simulation studies: single bar \rightarrow crystal module
 - Small-scale detector module design: first glance

Overview of this report: R&D status

R&D of a novel highly granular crystal ECAL:

- PFA performance: key parameters
 - Evaluate physics potentials
 - Separation power, Higgs benchmark
- Reconstruction algorithm dedicated to new geometry design
 - Aims & challenges
 - Algorithm development & performance studies
- Detector design and performance
 - Detector units studies & requirements of hardware development
 - Crystal candidates: BGO / PWO
 - SiPM characterization: laser calibration
 - ¹³⁷Cs tests on long crystal bar: energy resolution & response uniformity
 - Simulation studies: single bar \rightarrow crystal module
 - Small-scale detector module design: first glance

Performance evaluation: introduction

- Adapted from CEPCv4 baseline detector
 - Finely segmented crystal ECAL: crystal cubes
 - Application and optimization of Arbor-PFA

Performance evaluation: separation power

- Reconstruction of jets: separation power of close-by particles
- Changes with Arbor-PFA
 - Ideal segmentation \rightarrow more realistic design suitable for crystal bar ECAL
 - Multi-threshold method: low threshold in digitization for energy resolution, high threshold in reconstruction for separation
- γ/γ separation study

Side view of crystal ECAL Two incident particles Change distance in between

• Similar separation power under high threshold in reconstruction

Performance evaluation: separation power

pi+/gamma Separation Efficiency

- Reconstruction of jets: separation power of close-by particles
- π^+/γ separation study

pi+/gamma Separation Efficiency

- 1×1×2 cm³ cubes shows more sensitive to geometrical gaps
- Hadronic shower reconstruction: challenge on clustering
- Matching clusters of charged particle to the tracks in tracker
- The algorithm is being optimizing, still space for improvement

Side view of crystal ECAL Two incident particles Change distance in between

Performance evaluation: Higgs benchmark

- Physics performance: reconstruction of 2-jet benchmark events
 - Boson mass resolution (BMR): $ZH (Z \rightarrow \nu\nu, H \rightarrow gg)$ at 240 GeV

- Significant improvement after Arbor-PFA algorithm optimization
- On going BMR study on 1×1×2 cm³ cubes...

Overview of this report: R&D status

R&D of a novel highly granular crystal ECAL:

- PFA performance: key parameters
 - Evaluate physics potentials
 - Separation power, Higgs benchmark
- Reconstruction algorithm dedicated to new geometry design
 - Aims & challenges
 - Algorithm development & performance studies
- Detector design and performance
 - Detector units studies & requirements of hardware development
 - Crystal candidates: BGO / PWO
 - SiPM characterization: laser calibration
 - ¹³⁷Cs tests on long crystal bar: energy resolution & response uniformity
 - Simulation studies: single bar \rightarrow crystal module
 - Small-scale detector module design: first glance

Reconstruction algorithm for long bar design: PFA development overview

- New software framework: CEPCSW .
- **Detector description** •
 - Full barrel geometry with DD4HEP ٠
 - 28 longitudinal layers, crossed arrangement
- Reconstruction algorithm: aims ٠
 - Final granularity $1 \times 1 \times 2$ cm³
 - Minimize impact from ghost hits
- Challenges •
 - Pattern recognition of clusters ۲
 - Associating charged clusters with tracks ۲

Remove ghost hits

Fangyi Guo, Weizeng Song, Shengsen Sun, Linghui Wu, Yang Zhang (IHEP)

An octave in the barrel ECAL with long crystal bars

x/mm

0.1

0.08

0.06 Aeg 0.04 Aeg 0.04 Aeg

0.02

Reconstruction algorithm for long bar design: latest effort

• Clustering algorithm for long crystal ECAL

Yang Zhang, Weizeng Song (IHEP)

- Reconstruction: application of Hough transformation
 - Local maxima of hit \rightarrow Hough band \rightarrow Hough cluster

• On-going work on hadrons/jets

Overview of this report: R&D status

R&D of a novel highly granular crystal ECAL:

- PFA performance: key parameters
 - Evaluate physics potentials
 - Separation power, Higgs benchmark
- Reconstruction algorithm dedicated to new geometry design
 - Aims & challenges
 - Algorithm development & performance studies
- Detector design and performance
 - Detector units studies & requirements of hardware development
 - Crystal candidates: BGO / PWO
 - SiPM characterization: laser calibration
 - ¹³⁷Cs tests on long crystal bar: energy resolution & response uniformity
 - Simulation studies: single bar \rightarrow crystal module
 - Small-scale detector module design: first glance

Detector design and performance

- Crystal candidates
 - BGO: light yield ~8000 p.e./MeV, ~300 ns light decay time
 - PWO: light yield ~120 p.e./MeV, ~30 ns light decay time
 - Cosmic-ray test to verify whether it can meet the requirement
- SiPM
 - Single photon spectrum
 - Candidates \rightarrow features
 - Pixel size and density requirements for future use
- SiPM + crystal
 - MIP response
 - Radioactive source test → energy resolution
 - 1D uniformity \rightarrow simulation + experiment
 - 2D uniformity \rightarrow module performance (Geant4 simulation)
- Module design
 - Small-scale detector module: first glance

Calibration scheme

Crystal candidates: cosmic-ray test with PWO crystal

- BGO crystal
 - Leading candidate currently
- PWO crystal
 - To verify whether the MIP response can meet the requirement
 - >100 p.e./MIP light yield is enough for $\sim 3\%/\sqrt{E}$ energy resolution

- Measurements show requirement of >100 p.e./MIP can be met
 - Cosmic tests: reasonably consistent with G4 optical simulation
 - Further considerations: higher MIP response desired for more headroom

Characterizations of SiPMs: laser calibration of SiPMs

- Motivation
 - For SiPMs with large size and high pixel density, the noise effect is significant
 - Laser calibration to get single photon spectrum
- Laser test stand setup
 - 405nm picosecond laser, collimator, neutral density filter
 - 0.1% transmittance neutral density filter to reduce laser intensity

Characterizations of SiPMs: SiPM candidates

• DUT: HPK & NDL SiPMs, large size and small pixel pitch SiPMs are prefered

• Nominal gain 7×10⁵

NDL EQR15 11-6060D-S

Characterizations of SiPMs: single photon spectrum

• Single photon spectrum of DUTs

- Criteria for SiPMs: pixel size, gain, price, capability of single photon detection...
- NDL EQR06 series with 6 μm pixel and 3×3 mm^2 active area
 - $\times 4$ more pixels than 25µm HPK one
 - Narrower pulse shape (~10 ns)
 - Half signal to noise ratio

Gain crosscheck:

• $7 \times 10^5 / 8 \times 10^4 \approx 70.03 / 8.07$

- Too many thermal noise signals
- Unstable baseline
- Unable to perform single photon calibration

Radioactive source test of BGO crystal: energy resolution

- Experiment setup
 - 662 keV gamma form ¹³⁷Cs, 1D moveable support
 - ~5 mm spread of gamma source
 - 400×10×10 mm³ BGO crystal bar, ESR wrapping
 - $3 \times 3 \text{ mm}^2$ SiPMs with 25 μ m pixel, air coupling, double-sided readout

Radioactive source test of BGO crystal: response uniformity

• Uniformity scan: 662 keV gamma for ¹³⁷Cs, change hit positions

- Less light attenuation effect than expected in simulation
- Relatively low response near one side
- Coupling, positioning, distance between crystal and radioactive source...
- Potential factors related to crystal manufacture

Simulation study: response uniformity of a single crystal bar

- Geant4 optical simulation
 - A single BGO crystal bar wrapped with ESR reflector
- Physics processes
 - Scintillating & Cherenkov
 - Boundary processes and absorption
 - SiPM modelling: geometry and response (PDE)

- Over 1000 photons detected per MIP
- ~10% non-uniformity under the current simulation parameters
- Roughly described by a quadratic function
- Non-uniformity: relative difference between the highest and lowest response

Parameters

- Model: UNIFIED, with adjustable surface roughness
- Absorption length, emission spectrum: measured data
- Reflectivity, Rindex, SiPM PDE...: available data from documentations

Geant4 Simulation (v10.7.3)

Simulation study: response uniformity of crystal ECAL module

Geant4 Simulation (v10.7.3)

- Simulation setup
 - 10×10×400 mm³ BGO crystal Bar
 - Crossed bar, 40×40×60 module
 - 1 GeV muon, 2D uniformity scan
 - Response has been parameterized (simulated without optical process)

- MIP Response of four corners is higher
- 2D non-uniformity seems lower than 10%
- Calibration constants depend on hit positions
 - Good reconstruction algorithm is required to get precise position resolution

Simulation study: response uniformity of crystal ECAL module

- Impact on energy resolution
 - 1-100 GeV electron
 - 3×3 modules are used to prevent energy leakage
 - Digitization and energy calibration are implemented
 - Energy resolution = Mean/StdDeV

- For higher value of non-uniformity, there is significant energy loss effect
- Severe distortion of energy resolution
 - Major contribution to constant term
- Response non-uniformity need to be calibrated
 - Requirements on calibration

Small-scale detector module design: first glance

- Motivations: crystal module development
 - EM shower profiles are intrinsically compact
 - e.g. $R_M = 2.26$ cm for BGO
 - Small-scale modules is sufficient for EM showers
 - Crucial to have beam tests for system level studies
 - Identify critical questions/issues for the final detector
 - Evaluate performance with data and to validate simulation
- Module design: crystal module (12×12×12 cm³)
- Future beam test: on-going study

A dummy crystal matrix with 3D printed support structure

crossed crystal bar

Summary & prospects

R&D of a novel highly granular crystal ECAL:

- PFA performance: key parameters
 - Evaluate physics potentials
 - Separation power, Higgs benchmark
- Reconstruction algorithm dedicated to new geometry design
 - Aims & challenges
 - Algorithm development & performance studies
- Detector design and performance
 - Detector units studies & requirements of hardware development
 - Crystal candidates: BGO / PWO
 - SiPM characterization: laser calibration
 - ¹³⁷Cs tests on long crystal bar: energy resolution & response uniformity
 - Simulation studies: single bar \rightarrow crystal module
 - Small-scale detector module design: first glance

- Prospects
 - Challenge on PFA: still optimizing
 - Detailed simulation studies on crystal ECAL performance
 - Address key issues on module design
 - ...

EM energy resolution: threshold and light yield requirements

- Impact on energy threshold (in MIP) and light yield (in p.e./MIP)
 - Digitization: photon statistics (crystal + SiPM), electronics resolution

Energy Resolution 100p.e./MIP

Light Yield vs Stochastic Term

• Moderately high light yield and low threshold required for better than 3% stochastic term

Characterizations of crystals and SiPMs: laser calibration of SiPMs

- S/N versus gain of preamplifier
 - HPK S13360-6025PE + CAEN A1423B

- S/N did not change significantly form 18 dB to 42 dB
- Operation under low gain can reduce the pressure on electronics while maintaining a good S/N

Small-scale detector module design: first glance

• Simulation of BGO/PWO crystal matrix for beam test: saturation of SiPMs and front-end electronics

- Saturation effects: severely degrade energy linearity (as well as resolution)
 - Adjust the fluorescence property of BGO crystal (collaboration with Shanghai Institute of Ceramics, CAS)
 - Neutral density filter, Si-PIN photodiode, TOT technique...
- Realistic mechanical and electronic design...

