Strip response stability of

 sc-ecalBeta ray response with simultaneous p.e. measurements
scintillator (Injection molded) and PS stability must be tested
T.Takeshita 12Apr2022 for CALICE 2022

response stability of sc-ecal Strip stability by cosmic rays

- gain decreased by $-5 \% / 3$ months ($-20 \% /$ year $)$ at Cosmic Rays of CJ-ECAL
- stable PE response of PS (MPPC) for a month

response stability of sc-ecal Strip stability by cosmic rays

- gain decreased by $-5 \% / 3$ months ($-20 \% /$ year $)$ at Cosmic Rays of CJ-ECAL
- stable PE response of PS (MPPC) for a month

response stability of a strip

 stability test with beta rays in temp. controlled(1) continuous beta irradiation (without shutter) > -20\%/year !
$\sim 100 \mathrm{~Hz}$ beta rays
(2) intermittent beta irradiation (with
$4 \mathrm{~min} / 6 \mathrm{hs}$ shutter) > -10\%/year

temperature controlled box $20^{\circ} \mathrm{C}$

Introducing p.e. monitor

 With three different strips simultaneously- LED photons from side of strips
- Strip A: injection molded with ICEPP dimple
- Strip B: Kuraray SCSN38 with Shinshu dimple
- Strip C: EJ204 with Shinshu dimple
- PS: MPPC: S14160-1315CS
- HV common=-51V, Isum~0.3uA

p.e. peaks by an LED

- An LED is flickering with 10 Hz
- Histograms show ADC dist's at very beginning

- Fitting with sum of five gaussian functions between 100 and 200 ADC counts
- P.e.'s are calculated from the first(0p.e.) and second(lp.e.) peaks

p.e. peaks by LED

a week later : shape changed

- Histograms show ADC
 dist's at 7.5 days passed

- known fact: LED LY is stabler when applied voltage is higher, however, this is NOT

Pe stability result by LED trigger

 as of 28March2022 : started 28Jan2022 ~ 2months for stripA

Pe stability by LED

as of 28March2022 : started 28Jan2022 ~ 2months for stripB

6.1 ± 2.3 ADC/year : consistent with 0

 need to remove bad fits gain: 11.28 ± 0.17 ADC/pe stability $\sim 2.5 \%$

Pe stability by LED

as of 28March2022 : started 28Jan2022 ~ 2months for stripC

5.9 ± 0.91 ADC/year :
slightly decreasing
gain: 8.43 ± 0.10 ADC/pe

beta ray response

 With three different strips simultaneously- Fixing LED and Strips
- Beta ray source and a trigger counter move with a moving stage
- DAQ triggered both LED $(10 \mathrm{~Hz})$ and beta ray $(50 \mathrm{~Hz})$
- Moving stage (stepping motor) generates serious electric noise!

Beta ray and LED simultaneous Meas.

DAQ with beta trigger + 10Hz LED

- Due to serious noise from moving stage, funny peaks in strip ADC distribution
- By using trigger counter information (ADC and TDC), some noise events are removed and enhanced at pe and MIP peaks

Stability : beta rays stripA : injection molded strip

- For 2.5 months : almost no gain change
- Good stability
(beta-ped) stab

Stability : beta rays stripB: Kuraray SCSN38

- For 70 days: no gain change
- stable enough < 1.5%

ADC counts

Stability : beta rays stripC: EJ204

- systematic gain shifts detected
- LED system modified and noise from moving stage
- Good beta peak stability ~ 1%
- being investigated
(beta-ped) stab

Summary and outlook as of April2022 Strip/ PPD stability test

- in order to verify the stability of scintillator strip system
- set up to measure the stability of beta response with simultaneous photo-electron detection is established and started DAQ for two months
- on the whole, stable responses with beta rays for three strips include photosensors
- some little issues (gain shift and bad peak fittings)
- continue for more months
- next measurements: accelerated with higher temperature

Stability : beta rays stripC: EJ2O4

gain shift between run1610 and 1613
similar results with different bin width

16

Pe stability by LED as of 28March2022 : started 28Jan2022 ~ 2months for stripC
h3

