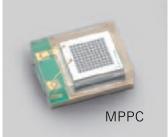
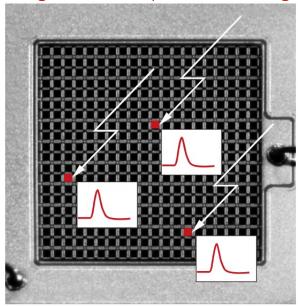

Study on SiPM saturation using UV light

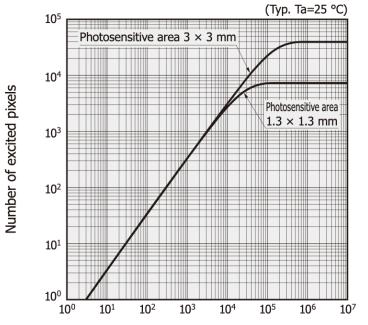

Tatsuki Murata, the University of Tokyo

CALICE Collaboration Meeting at Valencia 4/21/22

Scintillator ECAL

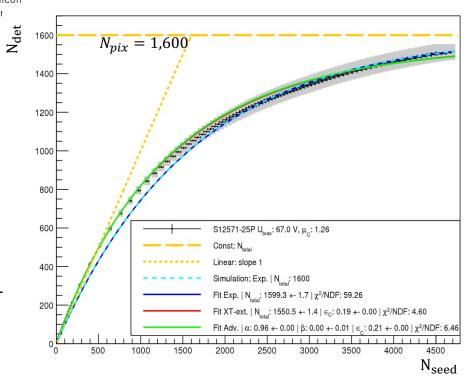
- Technology option of ILD ECAL
- Sampling calorimeter
 - Detection layer : scintillator
 - Absorption layer: tungsten
- Detection layer
 - $45 \times 5 \times 2 \text{ mm}^3$ scintillator strip
 - Virtual segmentation : 5mm × 5mm with strips in x-y configuration
 - SiPM readout
 - MPPC by Hamamatsu photonics
 - Excellent photon-counting capability




SiPM Saturation

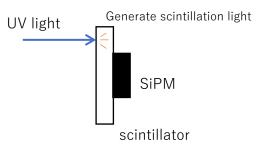
- SiPM signal saturates for many photons due to limited number of pixels.
 - Proper correction for SiPM saturation is crucial
- The saturation of SiPM can be an issue for scintillator detector with SiPM readout
- This saturation curve is affected by
 - scintillation emission time constant (a few ns)
 - SiPM recovery time (a few ns)
- We <u>developed a new method to measure SiPM</u> saturation.

Image of SiPM's photon counting


DC0049E

Number of simultaneously incident photons

Experimental principle


- Saturation curve : N_{seed} vs N_{det}
 - N_{seed} : number of photoelectrons when assuming no saturation
 - N_{det}: number of photons MPPC detected
- Saturation is usually studied by injecting fast visible-light pulse (~400 nm) directly to SiPM.
- New method by injecting UV light to the scintillator-SiPM system
 - Excite scintillation light by injecting fast UV light pulse
 - Scintillation light intensity is controlled by the UV light intensity to measure the SiPM saturation
 - Advantages
 - Effect of scintillation emission time constant is included in measured SiPM saturation
 - Saturation effect can be directly measured with the actual detector setup

Conventional method

New method

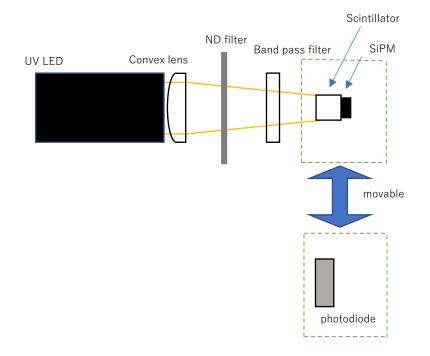
Saturation measurement -setup-

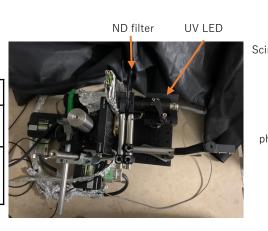
- Scintillator-SiPM and photodiode are irradiated by the same UV light pulse using moving stage
 - The intensity is controlled using ND filter
 - SiPM detects scintillation light to observe saturation
 - Photodiode monitors the intensity of UV light

• SiPM : Hamamatsu MPPC S12571-025P

• Scintillator : EJ-200 ($2 \times 2 \times 2 \text{ mm}^3$)

• Light source : PicoQuant PLS series

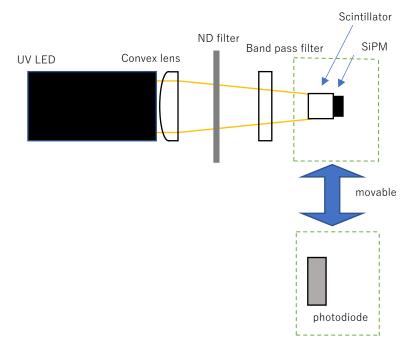

Measured also with visible light pulse for comparison


SiPM (S12571-025P)

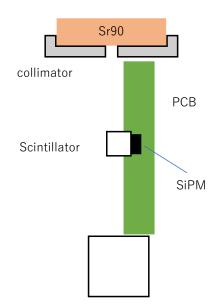
Effective area	1×1 mm ²
Pixel pitch	25 μm
Number of pixels	1,600

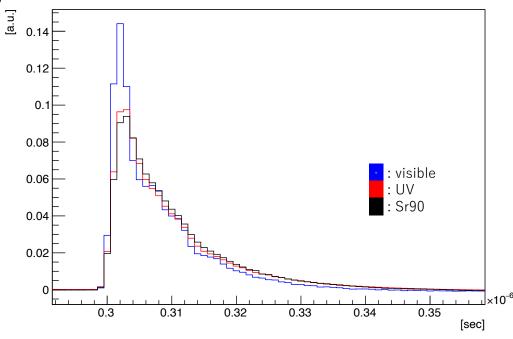
Attenuation length	380 cm		PLS 255	PLS 500
Maximum wavelength emission	425 nm	Wavelength [nm]	255 (±10)	485 (<u>+</u> 10)
rise time	0.9 ns	Pulse width (FWHM) [ps]	~400	~800
decay time	2.1 ns			
size	2×2×2			

Light source



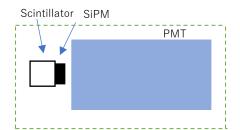
Saturation measurement -DAQ-


- Signal readout
 - <u>SiPM signal is mainly measured in current at source</u> meter.
 - To avoid the saturation of electronics
 - Also measured at digitizer at low UV intensity
 - To calibrate SiPM current and photoelectrons (p.e.)
 - Photodiode signal is measured in current at source meter

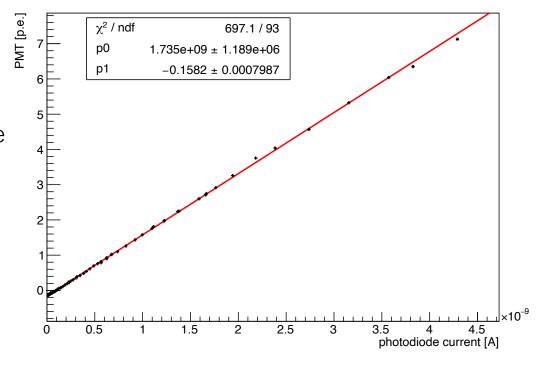

Detector	Signal Readout	
SiPM	current	
	photoelectron	
Photodiode	current	

Excitation of scintillator

- Compared waveforms of SiPM signals of <u>UV light</u>, visible light, <u>Sr90</u>
- Waveforms of UV light and Sr90 are almost the same
- Smeared waveform compared to visible light
 - →suggesting that scintillation light is excited by UV light



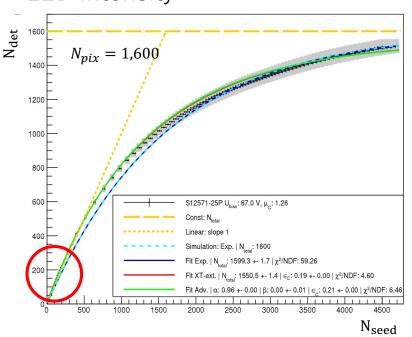
Trigger counter $(5 \times 5 \times 5 \text{ mm}^3 \text{ scintillator} + \text{SiPM})$

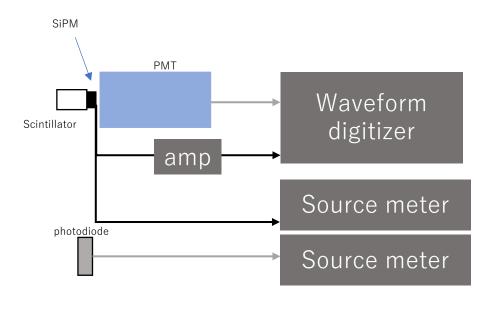


Relation between UV and scintillation light

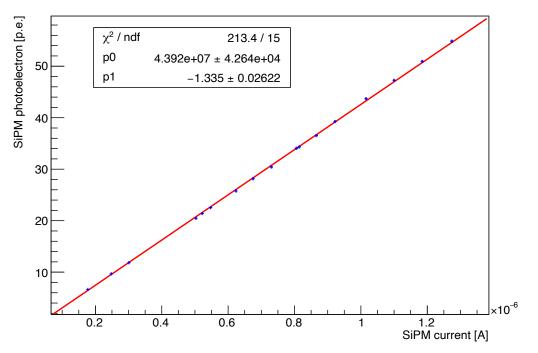
- PMT is placed behind the SiPM
 - Detects scintillation light
 - Calibrate the relation between the intensity of UV light and generated scintillation light

- Linear relation is observed in wide range
 - It is observed for the first time as far as we know
 - The number of incident scintillation photons can be estimated from the intensity of UV light



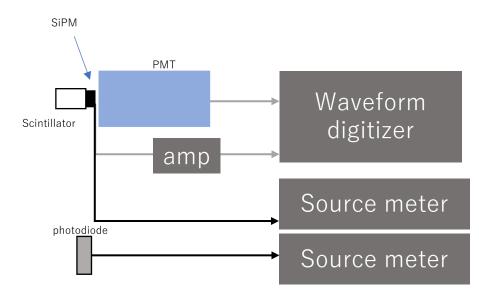

Analysis _{Ndetected}

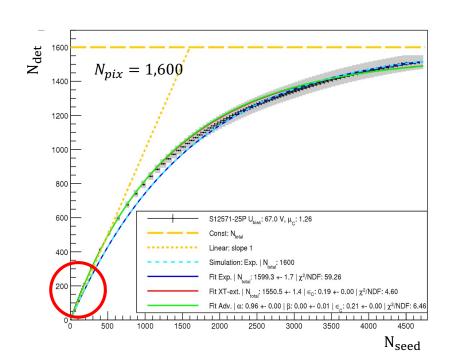
 N_{seed} : number of photoelectrons when assuming no saturation

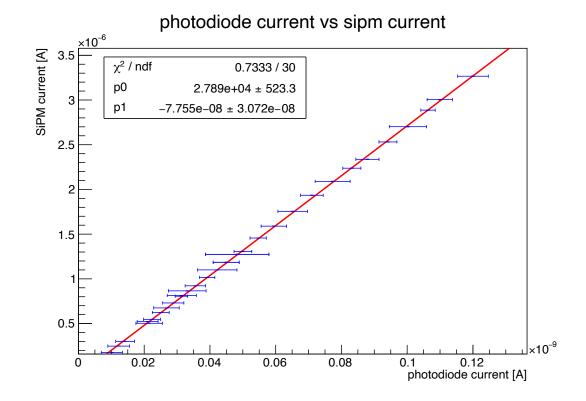

N_{detected}: number of photons MPPC detected

- SiPM signal is measured by two ways
 - Current at source meter
 - Photoelectrons at digitizer
- N_{detected} calibration
 - Convert SiPM current [mA] into photoelectrons [p.e.] using relation at low LED intensity.

sipm current vs sipm p.e.

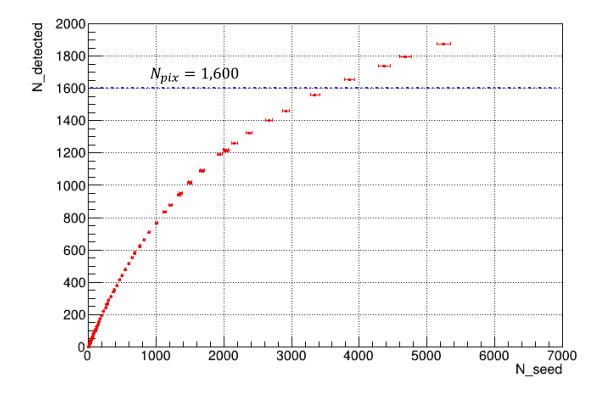



Analysis N_{seed}


 N_{seed} : number of photoelectrons when assuming no saturation

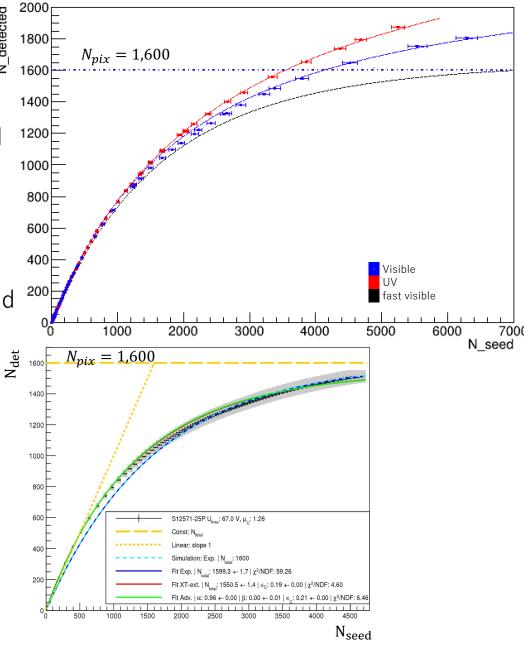
 $N_{detected}$: number of photons MPPC detected

- Source meter measures SiPM and photodiode current
- Photodiode monitors the intensity of UV
 - To estimate N_{seed}
- N_{seed} calibration
 - Relation between photodiode current and SiPM output at low LED intensity.



Saturation curve

- Saturation curve is obtained after the $N_{detected}$ and N_{seed} calibration
- Over saturation and a large recovery of SiPM saturation is observed
 - Due to the scintillation emission time constant



Saturation model

- Developed new saturation model
 - Including the effects such as crosstalk, after-pulse, and recovery time of a pixel
- The saturation model is compared with the measured curve
 - Model curve well describes measured curve.
 - N.B. scintillation emission time constant had to be tuned
- Longer pulse for the visible light in this study (~2 ns) is compared to the conventional saturation measurement (~100 ps)
 - →smaller saturation
- Our saturation model nicely describes the measured curve for visible light and the conventional curve too.

SiPM	catalog	Measured
Recovery time [ns]	A few	7.4 ± 0.1
Crosstalk probability [%]	20	34 ± 2
After pulse probability [%]	-	4.0 ± 0.4

Scintillator	catalog	Fit
Rise time [ns]	0.9	1.3
Decay time [ns]	2.1	2.6

Summary

- We <u>developed a new method to measure SiPM saturation with scintillation light excited</u> by UV light pulse.
- Linear relation between the scintillation light and the intensity of injected UV light is observed.
- Large saturation recovery is observed in the measured saturation curve.
- <u>Developed new saturation model</u> including the effect of crosstalk, after-pulse, pixel recovery, and scintillation emission time constant.
 - →Confirmed the new model well describes the measured saturation curve.