Megatile status and test-beam analysis

Antoine Laudrain (JGU, Mainz)

On behalf the JGU team: Volker Büscher, Phi Chau, Karl-Heinz Geib, Lucia Masetti, Marisol Robles, Sebastian Ritter, Anna Rosmanitz, Christian Schmitt including the PRISMA detector lab team: Peter Bernhard, Anastasia Mpoukouvalas, Quirin Weitzel

Bundesministerium für Bildung und Forschung

CALICE Collaboration meeting Valencia - 21/04/2022

The AHCal baseline design

AHCal: Analogue Hadronic Calorimeter

- Plastic scintillator tiles. lacksquare
- SiPM readout. \bullet
- Total **8M channels**! \bullet

The AHCal baseline design

- **AHCal: Analogue Hadronic Calorimeter** \bullet
 - Plastic scintillator tiles.
 - SiPM readout.
 - Total **8M channels**!
- 1 board = 36x36 cm² (144 channels)
- 1 channel =
 - 1 **SiPM** (Hamamatsu S13360-1325)
 - 1 scintillator tile polystyrene (30 x 30 mm², 3 mm thick).
- Individually wrapped in reflective foil and glued on PCB.

Megatile status and test-beam analysis

The AHCal baseline design

- AHCal: Analogue Hadronic Calorimeter
 - Plastic scintillator tiles.
 - SiPM readout.
 - Total **8M channels**!
- 1 board = $36x36 \text{ cm}^2$ (144 channels)
- 1 channel =
 - 1 SiPM (Hamamatsu S13360-1325)
 - 1 **scintillator tile** polystyrene (30 x 30 mm², 3 mm thick).
- Individually wrapped in reflective foil and glued on PCB.
- Large prototype built in 2018, TB at CERN.
 Feasibility demonstrated with 22'000
 - channels, but tedious assembly.

Antoine Laudrain (JGU-Mainz)

Megatile status and test-beam analysis

- Build one single 36x36 cm² tile.
- Cut trenches and fill with optical insulation. •
- Pour flowing glue + TiO_2 mixture \rightarrow reflectivity.
- Optimal angle: 30°, minimise dead area.

Megatile status and test-beam analysis

Megatile concept

- Build one single 36x36 cm² tile.
- **Cut trenches** and fill with **optical insulation**.
- Pour flowing glue + TiO_2 mixture \rightarrow reflectivity.
- Optimal angle: 30°, minimise dead area.

- Glue **reflective foil sheet** directly on the megatile (with laser-cut holes for SiPM)
- Air gap (<100 μ m) to ensure total reflection.

- No change to SiPM:
 - Same electronics boards.
 - Same readout.

Megatile status and test-beam analysis

Megatile concept

- Build one single 36x36 cm² tile.
- **Cut trenches** and fill with **optical insulation**.
- Pour flowing glue + TiO_2 mixture \rightarrow reflectivity.
- Optimal angle: 30°, minimise dead area.

- Glue **reflective foil sheet** directly on the megatile (with laser-cut holes for SiPM)
- Air gap (<100 μ m) to ensure total reflection.

Antoine Laudrain (JGU-Mainz)

Megatile status and test-beam analysis

The Megatile experience

- Project started in 2017.
- Already 10 prototypes built with continuous improvement.

The Megatile experience **Cosmic test stand @ Mainz detector lab**

- **Project started in 2017.**
- continuous improvement.
- Continuously tested in cosmic test stand @ Mainz.

The Megatile experience **Cosmic test stand @ Mainz detector lab**

- **Project started in 2017**.
- continuous improvement.
- **Continuously tested** in **cosmic test** stand @ Mainz.

Megatile performance from cosmic and test-beam data

- **High and uniform light-yield**, except for the edge channels (~30–50% lower).
- **Reason: coating of edge channels is difficult.**
 - Baseline solution: stick an auto-adhesive reflective foil, but limited improvement.

Edge treatment

Megatile status and test-beam analysis

- **High and uniform light-yield**, except for the edge channels (~30–50% lower).
- **Reason: coating of edge channels is difficult.**
 - Baseline solution: stick an auto-adhesive reflective foil, but limited improvement. Improved solution: spray a white varnish.
 - - Up to perfect recovery, yet with large efficiency variation. Encouraging!
 - Due to variations in spraying. Systematic method **under development**.

Edge treatment

L	25.2152	31.8035	30.342	30.5248	31.8752	31.4248	30.2097	30.6376	31.3257	34.459	31.081
K	29.9238	28.9906	36.9849	34.808	36.7398	36.1616	37.8364	36.8557	37.818	40.2213	36.149
J	30.6165	35.5847	37.1026	36.8981	38.8896	36.7131	36.0909	36.3078	36.1945	38.3592	35.996
Ι	29.9714	36.2867	37.0025	39.3994	38.7732	39.1518	35.7027	37.4189	36.0416	35.118	34.457
Н	27.5931	37.5579	38.043	43.5172	39.3158	37.2429	35.867	35.7954	34.7143	35.0989	31.761
G	23.787	33.8342	28.1429	37.9689	39.7128	35.564	35.335	33.9393	32.9775	33.8659	30.599
F	24.5909	33.374	36.2508	36.4373	35.3957	33.6267	32.4697	31.0805	33.9744	25.8654	30.329
Е	28.6288	36.9862	36.5851	35.8035	34.3626	33.4212	33.5136	31.5826	32.9293	33.6149	32.066
D	29.8968	35.6742	35.7565	35.6884	35.5064	34.3135	32.4283	31.2709	32.2396	34.2151	35.082
С	29.6103	36.9598	36.5473	37.5264	37.0454	37.0354	34.4819	33.0362	33.0836	34.0868	35.269 [,]
В	29.6362	27.8027	37.5512	37.7234	38.9905	38.2583	33.1064	33.701	32.6536	33.5119	34.488
A	24.4535	29.7827	31.3197	31.262	30.9129	30.8033	28.3855	32.3016	31.1338	31.8377	32.766
	A	В	С	D	E	F	G	Н		J	K

Megatile status and test-beam analysis

Light-yield

- Light yield of newest prototypes (MT10) too high for the current electronics settings!
- Light-yield:
 - Single tile layers: ~15 p.e. / MIP => readout in **high-gain**.
 - Megatile layers: ~35-40 p.e. / MIP => readout in **high-gain or low-gain**!

MIP peak in the gain transition region:

- Difficult gain intercalibration needed.
- Landau fit often imprecise due to bump in tail.
- Discovered during Sept. 2021 TB.

Settings to be corrected for next test beam (CERN).

Antoine Laudrain (JGU-Mainz)

Megatile status and test-beam analysis

Cross-talk

- Must be careful with air gap: lacksquare
 - Too large \rightarrow optical cross talk.
 - Simu: 3.5% for 100 μm.
- No need for 0% cross-talk: expect hadronic showers.
- Using August 2020 TB data:
 - uniform cross-talk ~1.6 %.

- Test beam in 2020 and 2021: lots of data taken with a telescope setup.

"Minimal dead area"

• Precise positioning of particles = very fine scan of the transition between two channels.

Scanned area

Megatile status and test-beam analysis

- Test beam in 2020 and 2021: lots of data taken with a telescope setup.
- Hit efficiency map: given a track in the telescope, was it detected in the tile layer?

Individual tile layer: 100% inside, 50% between tiles

Antoine Laudrain (JGU-Mainz)

"Minimal dead area"

Precise positioning of particles = very fine scan of the transition between two channels.

Megatile layer: 100% everywhere.

CALICE Collab - 21/04/2022

Megatile status and test-beam analysis

10

Ageing studies

Antoine Laudrain (JGU-Mainz)

- Initially prompted by sudden drop in measured LY of proto #6.
- **Continuous monitoring** (regular measurements) since then.
- **Average light-yield: observe slow** decrease of ~5% / year in all prototypes.

Megatile status and test-beam analysis

CALICE Collab - 21/04/2022 -11

Single tile layer monitoring

- Same monitoring on **single tile layers**:
 - 1-1.5 % / year.
- Hypotheses:
 - **Intrinsic ageing** of the scintillator?
 - **Reaction** due to glue+TiO₂ **mixture**?

Tests ongoing:

- Build single tile from megatile scintillator.
- Put glue mixture on a single tile.
- Controlled light exposure.

Megatile status and test-beam analysis

Conclusions

Megatile = promising concept: improves mass production while maintaining a high light-yield, low cross-talk and improving hit efficiency!

- Edge channels:
 - Coating is difficult, but spraying a white varnish recovers the performances. • **Optimisation** and systematic method **under development** (# varnish layers).
- **Foil gluing** on top and bottom of the megatile:
 - Improves the overall light-yield.
 - Cross-talk under control: ~1.6 %.
- Recent TB analysis showed we must be careful with electronics configuration.

Long term monitoring still ongoing. Goal: determine cause of slow light-yield decrease.

Megatile status and test-beam analysis

Ongoing and future tests

- Ageing tests under way:
 - Intrinsic ageing of the scintillator?
 - **Reaction** due to glue+TiO₂ mixture?
 - Light exposure?
- - Combined run with KLauS HBU?
 - Efficiency between Megatiles?
 - First hadron beam for the Megatile!

Looking forward to the CERN Testbeam: hope for a full Megatile layer (4 boards).

Issue with worldwide supply of glue :(

Megatile status and test-beam analysis

Single tile gain evolution

Bottom layer

Top layer

Megatile status and test-beam analysis

Megatile gain evolution

Megatile status and test-beam analysis

Antoine Laudrain (JGU-Mainz)

Cross-talk analysis

tile channels in coincidence.

Megatile status and test-beam analysis

Cross-talk analysis

neighbour(mip)

- energy
 - 0.8
- 0.6 0.4 0.2

Event selection:

- Exactly 1 hit in each single tile layer.
- Hit energy in single tile layer > 0.7 mip.
- Energy in neighbour < 0.7 mip.
- Energy in central > 0.5 mip.

hit energies

Megatile status and test-beam analysis

Glue + TiO₂ mixture

- Light yield depends on what glue + TiO₂ mixture is filled in the trenches:
 - Absorption/reflection vs λ depends on concentration, size and shape/phase (rutile vs anatase) of TiO₂ granulates in the glue.
- <u>Trade-off:</u>
 - Liquid enough to flow in the trenches.
 - Adequate granularity for **reflection** (impact light yield).
- Tested optical properties of various Glue + TiO₂ mixtures.
- Improved in latest prototypes (good baseline since proto #5).
- Glues are known to acquire a yellow shade with time.
 - Amplified in presence of light (UV) and additives (like TiO₂).
 - Current choice is one with lowest ageing effect (10% yellowing threshold after > 15 years).

centration, size

ct light yield). TiO₂ mixtures. ine since proto #5)

e with time. additives (like TiO₂). ag effect

Filters Made by 12 Size 29 No. port on Natural 2 (1984)

