

Status of SiW Ecal Digital Readout Electronics and news about new FEV 2.0

Jihane Maalmi on behalf of the SiW Ecal Team

Calice Collaboration Meeting – 20th April 2022 – Valencia - Spain

Introduction

Update on Siw Ecal digital readout electronics and DAQ software

Two test beams with 15-layers prototype

- Nov 2021

- March 2022 : one week synchronized data with AHCAL prototype.

New Front End Board FEV2.0

Future plans

Reminder: Constraints on Readout Electronics

Spatial constraints for the Active Sensor Units (ASUs)

- Very limited space between layers (depending on the total number of layers).
- Two protoype versions have been realized with different SKIROC packaging and thickness:
- ✓ BGA option : PCB + components(1,2 mm) + connectors = √
 3,2 mm
- ✓ COB (Chip On Board) option : PCB and ASICs = 1,2 mm + connectors = ~2,3 mm

Constraints for the Slab Interface Board (SL-Board)

- The SI-board will be installed between ECAL and HCAL, separated by only 67 mm
- L-shape because of the cooling system
- Maximum Height : 6 to 12 mm depending on the location
- Control & Readout electronics at the extremity of the Slab
- Signal Integrity over a Slab : up to 15 interconnected ASUs
- Very low Power consumption (~ 150 mA/ Slab) : needs to run in power pulsing mode

Antelec connectors (1,5 mm high)

Calorimeter for ILC

Global Architecture Scheme

The SL-Board (V1 \rightarrow V2)

The **SL-Board** is the sole interface for the ~10,000 channels of a slab :

- It delivers the **regulated power supplies,** including **High Voltage**, **controls** the SKIROC ASICs, and **perfoms the full data readout**.
- It is connected to the CORE-Kapton via an internal **kapton layer** and a 40-pin connector.
- It is based on a MAX10 from ALTERA, which is a mix of CPLD and FPGA.
- It includes an ADC which will be used to monitor the pulsed power supply.
- Very size **limited:** 18 cm in width, 10 to 42 mm in length.
- Its own power consumption is < 1W</p>
- It can also be an **autonomous system** with direct computer access for testing and characterization purposes (using the **FTDI USB module**).

Going from V1 \rightarrow V2:

- All useless circuitry has been removed and the rest optimized
- more robust LV connector
- A switch has been added to encode the slot number
- a Flash EEPROM for permanent information storage: Serial Number
- Kapton length has been raised from 40 to 48 mm
- a DAC for SKIROC ADC calibration
 The FPGA can produce pulses for autonomous functional calibration of both gains
- The HV will be made available on the SL_Board to ASU connectors (both sides)

- The **CORE kapton** measures 40 cm. It is the **interface** between the CORE Daughter and the SL-Board. It permits driving and reading out **up to 15 slabs**.
- It transmits all the **clocks and fast signals**, and houses the control and readout links.
- It handles the **synchronisation** of the **15 slabs**.
- The Kapton Interface makes use of **asynchronous serial transmissions** in order to greatly simplify the synchronization of the numerous control and data links.
- The speed of the slow control and the individual readout links is : 40 Mbits/s
- Reminder : readout link of the ASUs : 2 x 5 MBits/s

des 2 Infinis

The CORE Module

The CORE Mother:

- The Control and Readout
 Motherboard have been developed for housing up to 2 Mezzanines: it permits separating the acquisition part from the specific front end part.
- External input and output signals permit synchronising or interfacing the module with other systems.
- The CORE mother sends common clocks and fast signals to the Core Daughters to keep the system synchronised
- The control and readout is possible through USB(2.0), Ethernet (secured UDP) over copper or Optical link
- The CORE module power consumption is 5 W

The CORE mother

The CORE module

The CORE Daughter:

- The CORE Daughter is based on a Cyclone IV FPGA. It is the interface between the CORE motherboard and the Kapton which permits driving and reading out up to 15 slabs.
- It buffers all the clocks and fast signals, and deals with the control and readout links through the Kapton Interface.
- It houses the second level of event buffers (derandomizers).
- Ctrl & Readout link between CORE Daughter and CORE Mother : 60 MBytes/s if USB, and 125 Mbytes/s if UDP.

The CORE daughter

Programming Firmware through CORE module: The JTAG Interface Board

- We designed this board in order to program the SL Boards Firmware through the CORE Module via the Core Kapton.
- Unfortunately we can not program all SL Boards at once: need to use the encoding wheel to select the SL Board Address.

Interfacing SL_Board to FEV13: design of the SL-ADAPT board

The new **SL-ADAPT interface** board permits the **control** and **readout** of a **FEV13** by a SL_Board. A **hole below the 3 kapton** cables permits connecting the high voltage for the wafers.

➔ To align all the FEVs11/12 with the FEV13

Laboratoire de Physique des 2 Infinis

Acquisition Software

- All the hardware components are detected automatically : Number of daughter boards, number of SL Boards connected to each daughter board, FEV Type (FEV 13 or 11/10 ..) and also the number of ASUs on each slab using slow control readout.
 Slow Control:
 - All necessary slow control parameters can be programmed through the Software
 - Slow control configuration is checked by writing twice the same values to the SKIROC shift regiser and reading back the pushed value on the SROUT signal.
- > Control and data Readout with **direct connection** to the SL Board via FTDI module or through the **CORE module**.

Calibration Pulses

Runni Jain AN Innut Stage Gain & Shanere Trigger Calib Advan	ng (
Analog Input Calib						
CORE side: ALLS V ALL SLABS V ALL ASUS V	J.					
Enable Calib Pulse Off III On · · · · · ·						
Calib Pulse DAC						
1.32 1.98 Select Amplitude Range :						
0.66 2.64 Small High	·					
0.00 3.30						
= 2 Prise 4 molify de = (3.3 V - D4C value)	inr					
	•					
Enable Input Calib Capacitance :						
for Channels: Select Skirocs:						
0 1 2 3 4 5 6 7 None All Ind						
16 17 18 19 20 21 22 23 7 5 3 1						
24 25 26 27 28 29 30 31 14 12 10 8						
32 33 34 35 36 37 38 39 15 13 11 9						
Apply .						

We have two ranges of amplitudes: in order to test High and Low Gain.

➢ Thanks to the DAC on the SL Board, we can send Pulses with Amplitude from ~few mV to ~150 mV.

 The FPGA can generate equidistant pulses with known distance:
 Permits testings the synchronization between multiple layers

we can study the Re-triggers...

➔ Thanks to this feature we can adjust the Common Threshold/ ASIC and the individual thresholds for each channel to trigger on ~0.5 p.e

Test Beam at DESY in November 2021 First test with 15 Layers!

DESY

> We prepared this test beam since 2020!

> Improved mechanics:

- Improvement of the prototype box: modification of the front panel for giving a better access to all connectors of the SL Boards.
- Better fixation for the ASUs

→ Hardware : SL Board V1→V2

> Software:

- Online hits histograming per channel
- Handling of **DESY Moving Table** (TCP/IP)
- Auto-increment of run numbers
- Temperature/AVDD monitoring

Calorimeter for L

Improvements in preparation of test beam March 2022

- We learnt that we needed more Online monitoring tools
- Minor firmware bugs corrections
- > We had to improve some cablings (HV cables an LV connectors on the patch panel)
- > Need to use **Binary data files** to increase data rate.

Online Hit Histograming and Strip Chart

Online Histograming of Last SCA (indicates Chips Saturation)

Calice Collaboration Meeting – 20th April 2022 – Valencia - Spain

New online monitoring tools

Online 3D Mapping for Hits and Charge + profile along layers

Other Measurements

Pedestal Measurements and Histo and Pedestal Correction Charge Measurement and Histogramming MIP Gain correction (reading MIP gain files)

EUDAQ Interface

EUDAQ Server/Client				– 🗆 X
Un-Register TCP/IP EUDAQ S	Server On 8008	Server IP Address: 192.168.0.10	Server Name wd-maalmi	Server Online
Connected EUDAQ Client :	Client IP Address: NONE	Disconnnet Client	Disconnect after Stop command 🔽	after delay 🚽 5 s
Received Frames:				
	Clear F	Received Frames		

- Added TCP server to handle EUDAQ TCP client
- Possibility to START/STOP with a specific run number from EUDAQ
- Possibility to stream Data to EUDAQ with/out saving Data to disk locally.

To be done: add command to LOAD SETTING FROM FILE

Test beam in March 2022

- Successfull data taking during two weeks : ~450 GBytes of data
- Raw binary data saving: ~8-10 times faster!
- Monitoring tools seem very helpful
- Successfull synchronous data taking with AHCAL

Synchronisation with AHCAL

Laboratoire de Physique des 2 Infinis

- Common 40 MHz Clock and AcqWindow source.
- Busy signal (corresponding to End of readout of All Skirocs AND buffers empty in SL-Board) sent from CORE-Module to CCC
- Cycle ID and its timestamp sent with Data (gives fixed offset between systems)
- Programmable Delay for the START_ACQ sent to the ASICS in order to fully synchronise both systems.

New Front End Board: FEV2.0

Designed by LLR in collaboration with IJCLab Based on Front-End ASIC : SKIROC 2A (Omega)

Improvements in the design of the FEV 2.0

Improved Layout :

Better shielding of AVDD and AVDD PA plans and minimisation of cross-talk between inputs and digital signals.

Power Pulsing Mode: new philosophy

- we limit the current through the Slab (current limiter present on the SL Board) which:
 - avoid driving high currents through the connectors and makes the current peaks local around the SKIROCs chips.
 - avoid voltage drop along the slab.
 - permits temperature uniformity
- > We add large capacitors with low ESR **for local energy storage** (around each SKIROC chip)
- > Generate **local power supply with LDO** (Low Drop Out) to remove voltage variations

Clean clock distribution all over the slab :

- for Slow Control and Readout Clocks
- ✓ Parallel configuration and readout over 2 partitions. (< Fev12 like)</p>
- ✓ Driving high voltage up to 350V for 750µm wafer (via the ASU connectors)
- ✓ Adding a filter for each wafer HV and limit the current in case of wafer failure

New Front Board FEV 2.0

SL END PLUG : for Slab extremity termination

- PCBs received end of 2021 and cabled in January at IJCLab.
- Problem of missing thermal pads that made the cabling very difficult: only one board cabled for now.

Minor modification to be reported on FEV 2.1

New FEV 2.0

Preliminary measurements and comparison between naked FEV 2.0 (Skiroc 2A) and FEV 11 (Skiroc 2)

C

High Gain 🛛 🔻

Sigma

0.00

Auto

▼ On/Off

- ×

V

Laboratoire de Physique des 2 Infinis

➔ One failing SCA of Skriroc 9

Calorimeter for ILC

Calice Collaboration Meeting – 20th April 2022 – Valencia - Spain

(Axis Scale Manual Auto Y min 🗘 0.00 Y max 🖏 100.00 X Axis Scale Manual Auto X min 🗳 0.00 X max 🖏 1465.00

Pedestal Measurements : Histograms FEV 2.0

FEV 2.0: Skiroc 0 /All Channels/All SCAs

FEV 2.0: All Skirocs/All Channels/All SCAs Pedestal/Charge Measurements Enable Pedestal/Charge Measurements: 🔽 On/Off Select for Plot or Histo Measurement: Left SLAB 0 @0 V ASU0 -Measurements Type Enable Pedestal/Charge Measurements: V On/Off Select for Plot or Histo Measurement: Left SLAB 0 @0 🔽 ASU0 SKIROC 0 🔻 All Channels 🔻 All SCAs 🖛 High Gain 🔻 Measurements Type Max Nb Of Entries (per SCA) 2 1000 tal (No Hit Flag) Charge (Hit Fla ALL ASICs 🔻 All Channels 🔻 All SCAs 🔫 High Gain Select for Plot: Histogram and RMS Plots avaible for Charge (Hit Flag) Max Nb Of Entries (per SCA) 🚔 1000 Pedestal (No Hit Flag) Plot Type Core Left | 🔻 SLAB 0 | 🔻 ASU 0 | 🔻 0.000 0.000 n fit - 0.000 0.00 Histogram and RMS Plots avaible for : Mean Values RMS Nb Of En Plot Type: RMS Mear Sigma Mean % 100 acquired frame Core Left 🔻 SLAB 0 🔽 ASU 0 🔽 After gaussian fit: 0.000 Nb Of Entries 960000 0.000 0.000 0.00 Nh Of Bins for Histo □ On/Off Pedestal Histogram Histos Mean Values RMS Nb Of Entries listogram Exclude 🔽 On/Of Update Histo % 100 acquired frames Nb Of Entries 15359948 230-Nb Of Bins for Histo 🗘 327 ▼ On/Off Pedestal/Charge Values beig Pedestal Histogram 220-[adc count] 0 00 210-800-Histogram Exclude 0n/Of 200-[adc count] Pedestal/Charge Values below 10 00 750-190-0.00 [adc count] Pedestal Measurements 180and above 700-Save Pedestal Values to Calib Structure 170-\$ 0.00 [adc count] 160for selected Core/Slab/Asu 650-150-If Nb of entries >= 100 Pedestal Measurements 140-600-Save Pedestals from Calib Structure to Calib File Save Pedestal Values to Calib Structure 130-120-550-(for selected Core/Slab/Asu:) g 110-If Nb of entries > = 🖨 100 Charge Measurements 500-100-Save Charge Measurement to Files 90 Save Pedestals from Calib Structure to Cali 450-5 ö 400-Charge Measurements 50-350ciroc/Ch9 [16] 40-Save Charge Measurement to Files 300kiroc/Ch11 [16] 250-200-Skiroc/Ch8 [16] 284 240 150uto Ymin 🗐 0.00 Ymax 🗐 100.00 X Axis Scale Manual 🔣 🛛 Auto Xmin 🗐 240 Skiroc/Ch9 [16] 100-Skiroc/Ch11 [16] e/Ch3 [16] FEV 2.0: Skiroc 0 /CH 0/SCA 0 50-Skiroc/Ch13 [16] 80 100 120 140 160 180 200 260 280 300 320 10 20 40 60 220 240 337 Skiroc/Ch15 [16 Skiroc/Ch7 [16] nable Pedestal/Chame Me nts: 🔽 0n/0 Select for Plot or Histo M SLAB 0 @0 🔻 ASU0 Pedestal Value [adc count] for Plot: SKIROC 0 💌 0 Max Nb Of Entries (per SCA) 👙 100 Plot Tyr Axis Scale Manual Auto Y min 🗍 0.00 Y max 🗍 100.00 X Axis Scale Manual Muto X min 🗐 10.00 X max 🗍 337.00 Core Left 🔨 SLAB 0 🗐 ASU 0 🔽 261.697 Mean Values RMS Nb Of Entrie Auto Save Pedestal Values to Calib Structure selected Core/Slab/Asu Nb of entries >= 100 RMS: 2.1 adc count Save Pedestals from Calib Structure to Calib Files 24 Calice Collaboration Meeting – 20th April 2022 Calorimeter for IL

Pedestal Measurements Histograms FEV 11

FEV 11: All Skirocs/All Channels/All SCAs

Calice Collaboration Meeting – 20th April 2022 – Valencia - Spain

Pedestal Measurements :

RMS Values (adc counts)

Pedestal Measurements : FEV11 Exclude « false » measurements

FEV 11: Mean RMS ~2/3 adc count , max value: 22

Laboratoire de Physique des 2 Infinis

Calorimeter for ILC

Pedestal/Charge Measurements

Zoom on RMS measurements for FEV 11, SKIROC 0

28

Threshold Scans and effect of shielding

Threshold scan between 200 and 250 with 20 steps (3 adc count/ step)

Hit map and Charge Map without shielding

Hit Color Map

Triggering Noise but no Charge

Calice Collaboration Meeting – 20th April 2022 – Valencia - Spain

C

Charge Injection: very small signals

Slab Interface Software V2.14 Interface Configuration Run Firmware Measurements Advanced Show Window Help 🕕 🥪 😒 hhi 📟 🟮 🧶 💭 🛈 LED Display J. On/Off (% 100 acquired frames) Running @ CORE side: Left 🛛 Sel Slab: ALL Slabs Main AN Input Stage Gain & Shapers Trigger Calib Advanced Analog Input Calib CORE side: Left 🔻 ALL Slabs 🔻 ALL ASUs 🔻 Enable Calib Pulse Off On Calib Pulse DAC 1.32 1.98 ASU 4 ASU 2 ASU : Select Amplitude Range : ASU 3 Select: CORE side ALLS V ALL Slabs V ALL ASUS V ALL ASICS V Small High Charge Display 🔽 On/Off(% 100 acquired frames) _2.64 0.66_ 300 280 -0.00 3.30 260 -\$ 2.90 V ==> Pulse Amplitude = (3.3 V - DAC value)/xxx 240-We look the 220 -200 -Enable Input Calib Capacitance : **E** 180-Select Skirocs: ن 160 minimum All AII Ind ang 140-2 4 **120** -3 7 B 100triggerable 14 80 -15 13 11 9 60 -Skiroc 11 40charge kiroc 1 20-Apply 0. Skiroc 15 800 1200 Ó 100 200 300 400 500 600 700 900 1000 1100 1300 1400 1463 Channel + SCAColumn x 100 Persist: Y Axis Scale : Manual Auto YAxis Min 20 YAxis Max 300

Hit and Charge 3D plots

32

Settings:

- Pulse Calib set to 3.2 V (in the calib Panel
 pulse amplitude ~ few mV)
 small Mean value : ~23 adc count.
- Charge injected on Channel 0 of all SKIROCs but ALL CHANNELS ON
- Threshold set to : 224
- Channel Threshold : 15

Charge Histograms with Pedestal correction

CINIS

Laboratoire de Physique des 2 Infinis

Calorimeter for ILC

Charge Measurement: Zoom on one Skiroc

Future plans and Conclusion

- Successfull data taking with 15-layer prototype (Nov 21, March 22)
 - Synchronized beam with AHCAL
 - Interface with EUDAQ
 - Improvement of Online monitoring tools
- > Next plans for Current SiW Ecal prototype:
 - Extend the prototype to more than 15 layers (mid term)
 Jusing existing boards: two core Kaptons and one Core Module.
 - Improve ground shielding
 - Try to understand inhomegeneity of gain in most ASUs
 - Work on Thresholds and Gain adjustment using charge injection?
 - Add other automatic measurements in the software: hold scan?
 - Problem with components shortage
 - → we can not currently produce any boards ...
- Next test beam at CERN : JUNE 2022
 - concentrate on good boards
 - 5 ? FEV13 + COBs and FEV11/12 Slabs
- New Front End Board FEV 2.0
 - Power Pulsing
 - Test a long Slab
 - TDC Measurements

