Bar Shaped Scintillator Tiles

Test Beam Plans and First Analysis

Malte Wagner

MAX-PLANCK-INSTITUT
FÜR PHYSIK

Current design

- Square shaped scintillator tile
- Dimple milled for SiPM
- Reflective wrapping
- SiPM in the middle of the tile
- In the order of $30 \times 30 \times 3 \mathrm{~mm}$

Bar shaped design approach

- Differences in geometry:
- Bar shaped instead of square shaped width $=30 \mathrm{~mm}$, height $=5 \mathrm{~mm}$ and length between 120 and 500 mm
- 2 dimples, located 15 mm from the edge of the tile (square tile dimples used for simplicity and easier analysis of differences)
- 2 SiPMs corresponding to the dimples
- Similarities:
- Same materials used (scintillator, wrapping etc.)
- Dimples of same size, despite thicker tile

120 mm tile

Bar shaped design approach

General idea:

240 mm tile

Simulation

- Seperate bar into grid to iterate over
- Track photons arriving at both SiPMs
- Scale by number of photons produced to remove effect of different energy depositions in the scintillator

Simulation

- Seperate bar into grid to iterate over
- Track photons arriving at both SiPMs
- Scale by number of photons produced to remove effect of different energy depositions in the scintillator

Lightyield from simulation

Sum of two middle bins gives fraction of photons that a SiPM see depending on x .
\rightarrow For 120 mm about 2 percent of produced photons get detected
Comparison of both SiPMs

SiPM1

Sum of the two middle bins

Lightyield from simulation

- $240 \times 30 \times 5 \mathrm{~mm}$ tile SiPMs 15 mm from the edge
- Approx. 89 photons recoginzed by any of the SiPMs (mode of the fit)
\rightarrow ca. 44 Photons detected per SiPM

Enough to be distinguished from background !

Lightyield by length

- Simulating nine different bar lengths results in:
- $\mathrm{f}(\mathrm{x})=5386$ * $\mathrm{x}^{-0.88}$

Experimental setup

- 2 Bars:
- $120 \times 30 \times 5 \mathrm{~mm}$
- $240 \times 30 \times 5 \mathrm{~mm}$
- 2 Trigger with different geometries dependings on the measurement
- Moveable stage for easier operation

Experimental setup

Results: Muon measurements

- All results are from the $240 \times 30 \times 5 \mathrm{~mm}$ bar
- Data taken from 1000 Muons measured over 4 days
- Different height of peaks due to different boards / slightly adapted electronics

Lightyield from experiment

Integral of Waveforms

Before p.e. calibration

Lightyield from experiment

\rightarrow First results yield smaller light yield, still high enough to be distinguished from background

Test beam plans

- Take data for small and long bar
- Understand general behaviour of bar for e.g. reconstruction of hit position from SiPM signals
- Increase position resolution with small trigger cube ($5 \times 5 \mathrm{~mm}$)
- Time resolution measurements
- Automated scanning of the bar with movable stage

Outlook

- Analysis of test beam results from current setup
- Simulations with other dimple sizes, as this is a 5 mm setup now
- Improvement / deeper consideration of dimple placement for 2 SiPM setup
- Hit detection with bar scintillators
- Timing studies for bar scintillators

