

CALICE SiW ECAL – Way to 15 layer stack

Roman Pöschl

On behalf of the SiW ECAL Groups in CALICE:

CALICE Meeting IFIC Valencia – April 2022

1

Prologue – "The FEV Zoo"

- In recent years the SiW ECAL has developed and used several PCB variants
 - To make sure that you don't get lost, here comes an introduction

FEV10-12

- ASICs in BGA Package
- Incremental modifications From v10 -> v12
- Main "Working horses" since 2014

FEV COB

- ASICs wirebonded in cavities
 - COB = Chip-On-Board
- Current version FEV11 COB
- Thinner than FEV with BGA
- External connectivity compatible with BGA based FEV10-12

FEV13

 Also based on BGA packaging • Different routing than FEV10-12 Different external connectivity

•

Silicon Tungsten electromagnetic calorimeter

Optimized for Particle Flow: Jet energy resolution 3-4%, Excellent photon-hadron separation

The SiW ECAL in the ILD Detector

- $O(10^8)$ cells
- "No space"
- => Large integration effort

Basic Requirements:

- Extreme high granularity
- Compact and hermetic
- (inside magnetic coil)

Basic Choices:

- Tungsten as absorber material
 - $X_0=3.5$ mm, $R_M=9$ mm, $\Theta=96$ mm
 - Narrow showers
 - Assures compact design
- Silicon as active material
 - Support compact design

- All future e+e- collider projects feature at least one detector concept with this technology
 - Decision for CMS HGCAL based on CALICE/ILD prototypes

 Allows for pixelisationRobust technology • Excellent signal/noise ratio: 10 as design value

SiW Ecal – Elements of (long) layer

• The beam test set up will consist of a stack of short layers consisting of one ASU and a readout card each

Digital readout SL-Board (IJCLab)

Note that an additional hub for hardware Development is being set up at IFIC/Valencia

Prototypes until ~2018

- 1024 channels per layer
- Assembly chains in France and Japan
- Beam tests at DESY and CERN since 2016

Roman Pöschl

R&D for thin PCB see backup

CALICE Meeting April. 2022

PCB FEV10-12 with long adapter card Wafer thickness 325 µm

PCB FEV13

with small(er) adapter card Wafer thickness 650 µm

Compact readout

Current detector interface card (SL Board) and zoom into interface region

SL Board

- "Dead space free" granular calorimeters put tight demands on compactness
 - Current developments in for SiW ECAL meet these requirements
- System allows to read column of 15 layers <-> to be expected in ILD
 - Important that full readout system goes through scrutiny in beam tests
- Note that 11 layers equipped previously with long adapter card have been disassembled and equipped with SL Board

Roman Pöschl

CALICE Meeting April. 2022

Complete readout system

- Mechanical housing by IJCLab
- First operation in Summer 2020 with 4 damaged slabs
- Two new slabs produced and two slabs repaired over Winter/Spring 2020/21
- Re-start on 2nd of June with 15 "full" layers by Yuichi (PhD), Robin (intern), IJCLab engineers and technicians and Adrian during visit to IJCLab
 - Reminder: 15 layers correspond to 15360 cells

- Since 2/6/21: Commissioning
- Since 18/6/21: Data taking with cosmics and systematic characterisation

Roman Pöschl

Operation modes

- Mechanical
 - Stack can be operated in "MIP Mode" and in "Tungsten mode"
 - Rails with thicknesses of 2.8mm and 4.2 mm
 - Detector is small and handy enough to switch between modes during a beam test
 - Switch will take around 1/2 day
 - For commissioning we operate in "MIP Mode"
- Electrical
 - Currently we operate in continous mode (i.e. not power pulsed)
 - A priori possible but ASUs not optimised for pp-mode
 - Left for FEV2.x (>= 2022)

Interior view on mechaniccal strucutre with CORE Kapton

Equipped stack at DESY before closing

- Two COBs in beam test
 - Replaced two layers of stack in March beam test

Before application of epoxy

After application of epoxy

- Three COBs encapsulated at IJCLab
 - Excellent pioneering work!
 - Two used for beam test
 - The third one has 15/16 chips operational (may need a further look)
- A fourth one encapsulated at IFIC/Valencia
 - Ready for usage

Gluing wafers onto COBs

- Wafer gluing at LPNHE
- Since a decade it was a concern whether wafers could be glued on flat COBs
- Gluing of one wafer already in 2019
- Gluing of four wafers onto two boards during winter 2020
- This step together with the beam test in March 2022 concludes the first R&D cycle on the COBs

Beam spot in COB

Roman Pöschl

Adaptation of FEV13

FEV13 connected via interface card to SL-Board

- Interface card for allows for integration of FEV13 in stack
 - Successful technical tests in Autumn 2020
 - In total 7 FEV13 equipped with wafers are available in F and JP
 - Two FEV13 used for beam test in March 2022

Testbeam readiness review – 7/10/21

- Review organised by CALICE TB before November 2021 beam test
- Reviewers: Mary Cruz (CIEMAT), Jiri (FZU) and Shen (UHEI)

Summary and outlook

- Since 2017 Compilation of stack with 15 layers to allow for consistent system tests of SiW ECAL
 - Lots of development work
 - Compact readout
 - Encapusaltion techniques for COB
- Regular running of stack with 15360 readout cells since beginning of June 2021
 - Stack is a combination of freshly produced layers and layers recycled from 2015/16 production
 - Easy integration of new layers
 - FEV13, COBs
 - New compact DAQ allows for smooth running and data taking (see talk by Jihane)
- Two beam tests in November 2021 and March 2022
 - Enormous learning curve
 - Experience shows (again) that only system tests in beam allow to get a complete picture on the atatus of the R&D
 - Stay tuned for further talks today and on Friday

Backup

Interface to FEV13 and Deployment of hardware

FEV13 connected via interface card to SL-Board

New FEV12 on single slab test bench

- Interface card for allows for integration of FEV13 in stack
 - Successful technical tests in Autumn 2020
 - In total 7 FEV13 equipped with wafers are available in F and JP
- Started to deploy Hardware/software for digital readout (i.e. SL-Board and User Interface) to other Ecal groups
 - First "client" LLR
 - IFIC will follow during visit of Adrian end of May/June, as soon as travel will be possible
 - In preparation of deployment to Japan is planned

15 Slabs setup 02/06/21

coreKapton slot		Layer position	Slab ID	ASU type	wafer	front end (slboard ID)	Glissiere neded for the W	W in front (mm)	XO	X0 (acc)	Comment
	14	0	31	FEV12	500		<				
shot	13	1	30	FEV12	500						
	12	2	13	FEV11	320	10	2.1mm	2.1	0.6	0.6	
11		3	14	FEV11	320	5	2.1mm	2.1	0.6	1.2	
10		4	15	FEV10	320	1	2.1mm	2.1	0.6	1.8	
9		5	19	FEV11	320	13	2.1mm	2.1	0.6	2.4	
8		6	20	FEV11	320	11	2.1mm	2.1	0.6	3	
7		7	24	FEV12	500	7	2.1mm	2.1	0.6	3.6	Stable AVE
6		8	21	FEV11	320	14	2.1mm	2.1	0.6	4.2	
5		9	25	FEV12	500	3	2.1mm	2.1	0.6	4.8	problems o
4 3 2		10	22	FEV11	320	4	4.2mm	2.1	0.6	5.4	
		11	23	FEV10	320	6	4.2mm	4.2	1.2	6.6	
		12	16	FEV11	320	9	2.1mm	2.1	0.6	7.2	
1		13	17	FEV11	320	2	4.2mm	4.2	1.2	8.4	problems o Stable con
0		14	18	FEV11	320	0	whatever (no W will be added) 4.2	1.2	9.6	

silssues
DD ??
communicating the ID of the SLboard ?? (SOLVED)
an ann an 1997. Ann an 1997 a' fairte anns an 1997 anns a' fairte anns an 1997 anns anns an 1997. Anns a' fairt

communicating the ID of the SLboard ?? (SOLVED) nsumption ?? -> SOLVED shorcut in DVDD (capacitance in skiroc 14)

New FEV2.0 et al.

Status after regular discussions between engineers of LLR, IJCLab, LPNHE and OMEGA

- New board for next step of technical realisation of power pulsed Ecal layers
 - Capacitances and LDO close to ASICs
- Last month progress in design
 - Stacking of PCB
 - Choice of components
- Another important feature is that HV will be transported via connectors (i.e. On top of board
 - Wafer supply from bottom of board via plies (copper/kapton)
 - These plies are a delicate piece
 - Risk of shortcuts and wafer damage (the design of the kapton that goes below the board requires another design round)
- Expect production either shortly before or shortly after the summer break (not in a hurry, carefulness comes before speed)
- The setup will be completed by a "Termination card" that will allow for flexible chaining of cards (i.e. No soldering of terminations)
- and for flexible adding of decoupling capacitances (to study noise behaviour of COBs) Roman Pöschl CALICE Meeting April. 2022

