Test Beam DESY@2022/03

Adrián Irles* on behalf the SiW-ECAL team

*AITANA group at IFIC - CSIC/UV

Outline

- ► Testing 15 stack with 15k readout cells
- ▶ New ultra compact DAQ able to cope with the complexity of having 15k readout cells
 - See J. Maalmi's talk
- Commissioning of the setup
 - See R. Poeschl's talk
- ▶ This talk (some selected results from the SiW-ECAL pre-CALICE meeting)
 - Technical tests (hold-scan, different gains...)
 - A brief overview of the layer performance (single cell performance)
 - First showers

Test Beam DESY 2021-22

Test Beam setup

- 4 layers are "resurrected"
 - Not operative before for different reasons
- ▶ 9 more layers have been "rebuild" → to adapt them to the new ultracompact DAQ
- ▶ 4 new layers
 - 2 of them with sensors glued in two separated batches (one sensor for test, the other 3 one year later)

Detector Interface (DIF)

Adapter card (SMB) for signal buffering + power regulation.

DIF and SL-Board concepts are completely compatible.

Test Beam

- **▶** DESY offers non-spilled beams of 1-6GeV (e-, e+)
- ▶ 15 layers with 1024 readout cells each
 - More than any LHC calorimeter
 - But it fits in a suitcase
- 4 weeks in total
- ~3 weeks of commissioning and "training"
 - Mechanical structure (adding or removing the tungsten plates)
 - New and continuously improving DAQ and online monitoring tools
 - New semi-online monitoring tools
 - Hold values, gain optimization, Threshold optimization, single cell calibration, etc

Run summary

- ▶ Work in progress
- Runs with and without tungsten
- ► Pedestal Runs
- ► Holdscan runs (TB2021)
- ▶ Different gains
- ► Threshold optimization
- etc

run#	type	pos x	pos y	window, delay (ms)		Slab 0 rate/Hz		stat slab 0 kHits	length / mins		Rem
050270	3.0 GeV	-130.1	+26.9	1, 10	20 Hz	250	31000	7.788	5	17:05	Cycle ~ 70/s; 10Mbits/s Frames = ??
050271	3.0 GeV	-130.1	+26.9	1, 4	20 Hz	350	38470	10.953	5	17:11	Cycle ~ 125/s; 14Mbits/s 37903 cycles, 55398 frames
050272	3.0 GeV	-130.1	+26.9	1, 2	20 Hz	400	44620	12.560	5	17:16	Cycle ~ 180/s; 16Mbits/s 57579 cycles, 57912 frames
050273	3.0 GeV	-130.1	+26.9	1, 19	20 Hz	175	3024	3.560	5	17:25	Cycle ~ 40/s; 7Mbits/s 12402 cycles, 23206 frames
050274	3.0 GeV	-130.1	+26.9	2, 2	20 Hz	500	19350	10.572	5	17:33	Cycle ~ 120/s; 20Mbits/s 37903 cycles, 55398 frames but saturations everywhere ! (see plots)
050275	3.0 GeV	-130.1	+26.9	4, 2	20 Hz	600	56190	8.494	5	17:39	Cycle ~ 80/s; 24 Mbits/s 61707 cycles, 22320 frames but saturations everywhere (flat distrib)
050276	3.0 GeV	-130.1	+26.9	2, 2	12 Hz	350	65800	6.798*0.7	5	18:19	Cycle ~100 /s; 15 Mbits/s 36446 cycles, 67533 frames tres peu de saturation (max in slab 6 ~ 250/(14*750) = 2%
050277	3.0 GeV	-130.1	+26.9	1, 2	12 Hz	300		9.363*0.5	5	18:19	Cycle ~200 /s; 12 Mbits/s 58634 cycles, 72657 frames

Beam position

- 3.0GeV_W_Pos-130+27_run_050278
- . COB mapping was now fixed for chip 15.

run#	type	pos x	pos y	Window, delay		Slab 0 rate/Hz	stat slab 0 kHits	length / mins		Rem
	3.0 GeV	-89.9	+26.9	2,2	20 Hz					lower right corner = slab 2, pad (16,8)
run_050278	3.0 GeV	-130.1	+26.9	2,2	12 Hz	400		72	19:26	lower left corner = slab 2, pad (8,8)
run_050279	3.0 GeV	-35.0	+112.5	2,2	12 Hz	(slab2) 600	, ,		21:30	Upper right corner
	3.0 GeV	-130.1	+112.5	2.2	20 Hz					Upper left corner

hold-scans

hold-scans

➤ Done at the lab with pulses... quite different results compared with beam

hold_coreslot_chip

Single cell calibration

- Two set of gains used:
 - LowElectrons Gains (or DESY gains) = 1.2pF for 320um wafers and 0.8pF for 500 and 650um wafers
 - ILCElectrons (or CERN gain) = 6pF
- For the DESY gain,
 - Pedestal and mip calibrations are estimated for the high and low branches
- For the CERN gain
 - only the high gain branch

	••	
layer position	SLABs before 01/04/2022	Slabs from 01/04/2022 ownards
0	34 fev13 650um	20 (fev11)
1	35 fev13 650um	21 (fev11)
2	33 cob 500um	34 fev13 650um
3	29 cob 500um	35 fev13 650um
4	19 (fev11) 320um	19 (fev11) 320um
5	20 (fev11) 320um	33 cob 500um
6	21 (fev11) 320um	29 cob 500um
7	30 fev12 500um	30 fev12 500um
8	31 fev12 500um	31 fev12 500um
9	24 fev12 500um	24 fev12 500um
10	25 fev12 500um	25 fev12 500um
11	22 (fev11) 320um	22 (fev11) 320um
12	18 (fev11) 320um	18 (fev11) 320um
13	23 (fev10) 320um	23 (fev11) 320um
14	17 (fev11) 320um	17 (fev11) 320um

Single cell calibration

- Two set of gains used:
 - LowElectrons Gains (or DESY gains) = 1.2pF for 320um wafers and 0.8pF for 500 and 650um wafers
 - ILCElectrons (or CERN gain) = 6pF
- For the DESY gain,
 - Pedestal and mip calibrations are estimated for the high and low branches
- For the CERN gain
 - only the high gain branch

	••	
layer position	SLABs before 01/04/2022	Slabs from 01/04/2022 ownards
0	34 fev13 650um	20 (fev11)
1	35 fev13 650um	21 (fev11)
2	33 cob 500um	34 fev13 650um
3	29 cob 500um	35 fev13 650um
4	19 (fev11) 320um	19 (fev11) 320um
5	20 (fev11) 320um	33 cob 500um
6	21 (fev11) 320um	29 cob 500um
7	30 fev12 500um	30 fev12 500um
8	31 fev12 500um	31 fev12 500um
9	24 fev12 500um	24 fev12 500um
10	25 fev12 500um	25 fev12 500um
11	22 (fev11) 320um	22 (fev11) 320um
12	18 (fev11) 320um	18 (fev11) 320um
13	23 (fev10) 320um	23 (fev11) 320um
14	17 (fev11) 320um	17 (fev11) 320um

covariance matrix method

https://arxiv.org/pdf/1401.7095.pdf

Coherent noise source identification in multi channel analysis

T. Frisson^{*1} and R. Poeschl¹

¹Laboratoire de L'accélerateur Linéaire (LAL), CNRS/IN2P3, Orsay, France

May 4, 2021

- ▶ "The goal is to identify and characterize dissociable noise sources in a multi channel systems. This
 method cannot separated noise sources which affect exactly the same set of channels. In this case, the
 noises sources are processed as a single source. We consider a system with N channels. "
- ► "Each channel **k** is affected by an incoherent noise source **I_k** and Nc coherent noise sources (**C1_k**, **C2_k,... CN_k**). We assume that all noise source distributions are Gaussian and independent."

covariance matrix method

CHOILIGI I IS

$$\sigma_i^2 = \sigma_{I_i}^2 + \sum_{j=1}^{N_c} \sigma_{C_i^j}^2 \tag{1}$$

The covariance matrix element from the two channels i and k is expressed by:

$$cov(i,k) = \delta_{ik}\sigma_{I_i}\sigma_{I_k} + \sum_{j=1}^{N_c} \sigma_{C_i^j}\sigma_{C_k^j}$$
(2)

where:

$$\delta_{ik} = \begin{cases} 1 & \text{if } i = k \\ 0 & \text{if } i \neq k \end{cases} \tag{3}$$

The covariance matrix element can also be determined from the data:

$$cov_{Data}(i,k) = \frac{\sum_{n=1}^{N_{event}} (A_i(n) - \mu_{A_i})(A_k(n) - \mu_{A_k})}{N_{event}}$$
(4) Pedesta

Measured amplitud if no hit

covariance matrix method

- ► The average pedestal is calculated on the fly
 - No gaussian fit is performed
- Following same recipe than in the CALICE note, we get the convergence with 2 coherent noises

Pedestal position and incoherent noise

Layer 7, slab30 FEV12 sk2a, 500um (reference slab)

- ▶ 1) Pedestal map
 - Few channels are off
 - These are usually seen as noise sources (FEV10/11/22)
- ▶ 2) Incoherent noise map
 - The masked channels (37 plus more) have lower widths
 - Some near 37 channels have large noise contributions
- ▶ 3) coherent noise map (c1)
- ▶ 4) coherent noise map (c2)

COB vs BGA

Pedestal incoherent+coherent noise

COB vs BGA

Layer 7, slab30 FEV12 sk2a, 500um (reference slab)

▶ 1) MPV value (fit to landau+gaussian)

- ▶ 2) Number of events in coincidence
 - Simple event building
 - 7 layers in coincidence (+-1 bcid)
- ➤ 3) & 4) the same bu in chip-chn instad of x-y

Few more plots

► The empty spaces are corners where we did not shoot the beam

Few more plots

- ► Some slabs present problems...
 - Associated to detachment of wafers (glued)
 - Worrisome situation than is to be understood with high priority
 - ~1/3 of 15 slabs seem difficult to be recovered
 - Other slabs are in the pipeline (at least 3 equipped FEV13s + 2 new boards FEV12/COB/orFEV2.)

COB vs BGA

DESY gain: high vs low branch gains

DESY gain high gain branch

The low gain branch fits are not as optimal as the high gain...

DESY vs ILC gain

DESY gain high gain branch

ILC gain High gain branch

1.2pF vs 6pF \sim x4.73

100

200

300

400

500

600

700

Summary and outlook

- ▶ We had 4 weeks of training, commissioning and debugging with beam
 - and data for calibration and shower studies
 - See J. Kunath and Y. Okugawa's talks on friday (data) and F. Jimenez (simulation)
- ► Worrisome situation for ~1/3 of slabs related to gluing issues
 - To be understood
 - And to be replaced (for CERN)
- ► Next challenge: common running with AHCAL
 - See talk by J. Maalmi
 - Online DAQ based on EUDAQ.

Lucky to have you...

- ► Very strict sanitary requirements
 - But we are extremely happy of having access to beam time.
- ► Testbeams are crucial for our community
- ► Thanks!

The measurements leading to these results have been performed at the Test Beam Facility at DESY Hamburg (Germany), a member of the Helmholtz Association (HGF)

back-up

COB vs BGA

