energy linearity and resolution from measurements at DESY

EPICAL-2 project

20.04.2022 CALICE collaboration meeting

Tim Rogoschinski Institut für Kernphysik Goethe Universität Frankfurt

reminder: EPICAL-2 test-beam measurement at DESY

- fully digital pixel calorimeter prototype utilising only high-granularity MAPS sensors
- 24 layers with 3 mm tungsten and two ALPIDE chips each • chip size 30 mm x 15 mm
- ► 512 x 1024 pixels per chip: • 25 M pixels in total • pixel size:

dipole magnet

Primary

target

26.88 µm x 29.24 µm

Secondary collimator

DESY II

Primary collimator

EPICAL-2

EPICAL-2 signal distribution

- Gaussian shape (small asymmetry)
- residual pile-up at higher N_{hits} / N_{clus} side
- Iow-energy contamination of electron beam
- good agreement with simulation

extraction of arithmetic mean and standard deviation of distribution

energy response: linearity check

arithmetic mean (μ) and standard deviation (σ) of hit and cluster distributions

energy linearity studies

Linear fit: $\mu(E) = m \cdot E + b$

b usually associated with noise that one would see in pedestals

y - intercept (values for parameter b):

	hits	clusters
data	14.7 +- 0.2	7.3 +- 0.03
sim.	2.6 +- 0.4	4.1 +- 0.07

part of the non-linearity is a side-effect of the clustering algorithm

energy linearity studies

Linear fit: $\mu(E) = m \cdot E + b$

including noise estimate from pedestals: 2.91 x $10^{-3} \pm 9.2 \times 10^{-6}$

y - intercept (values for parameter b):

	hits	clusters	
data	2.91 x 10 ⁻³	2.91 x 10 ⁻³	
sim.	0	0	

including noise estimate causes change in apparent linearity behaviour

looking for mechanisms causing the apparent non-linearity: DESY beam energy uncertainty

DESY test beam paper:

- mean momentum and momentum spread measurement
- set momentum via magnet currents
- expectation values as diagonal (black line)
- constant momentum spread: $(158 \pm 6) \text{ MeV}$
- deviation from expectation values:

p ₀ (GeV/c)	p _{eff} (GeV/c)	Δp (GeV/c)
1.0000	1.1214	0.1214
2.0000	2.0475	0.0475
3.0000	3.0301	0.0301
4.0000	4.0246	0.0246
5.0000	4.9951	- 0.0049
5.6000	5.5659	- 0.0341

[%] uncert omentu

Ð

6 🖉

mome

Ð

energy linearity

data:

- additional point with noise level at E = 0 GeV
- asymm. syst. unc. on energy from DESY paper (unc. on 5.8 GeV approximated by 5.6 GeV value)
- unc. on energy converted to unc. on residuals by calculating maximally possible shift
- data points displaced for better visibility

simulation:

• parameter *b* fixed to b = 0

energy linearity

EPICAL-1 data points added:

- same detection principle
- similar pixel size as EPICAL-2

comparison btw. **EPICAL-1** and **EPICAL-2**:

similar non-linear trend (probably also related to DESY beam momentum uncertainty)

ع 1800 effectively fixing offset in response 1600 function to 0 justified? 1400 consistent with observed extremely low noise 1200 number of hits in simulation 1000 very close to ideal linearity significant non-linearity 800 in number of clusters in simulation 600 difference between hits and clusters similar for data and simulation 400 number of hits from 200 EPICAL-1 agree with EPICAL-2 deviation of data from simulation ⁱⁱ, 0.06 consistent with energy non-linearity in DESY test beam 0.02E -0.02 additional deviation for highest energy, -0.04⊨ related to phase-space limit of -0.06⊨ -0.08 accelerator? -0.1⊨

energy resolution: comparison to other prototypes

arithmetic mean (μ) and standard deviation (σ) from corresponding distributions:

- noise term negligible
- better performance for clusters
 - large cluster-size fluctuation
 - calibration can be improved

energy resolution: comparison to other prototypes

arithmetic mean (μ) and standard deviation (σ) from corresponding distributions:

- noise term negligible
- better performance for clusters
 - large cluster-size fluctuation
 - calibration can be improved
- improvement since EPICAL-1 (MIMOSA) JINST 13 (2018) P01014
- close to analog SiW ECAL (CALICE) physics prototype NIM A608 (2009) 372

energy resolution superior to previous prototype

energy resolution: comparison to simulation

two simulation scenarios:

- ideal simulation no beam energy spread
 - better energy resolution w.r.t. data
- simulation with constant absolute value of the beam energy spread (158 MeV) - - -NIM A 922 (2019) 265-286
 - below data at high energy
 - above data at low energy

energy resolution: comparison to simulation

two simulation scenarios:

- ideal simulation no beam energy spread
 - better energy resolution w.r.t. data
- simulation with constant absolute value of the beam energy spread (158 MeV) - - -NIM A 922 (2019) 265-286
 - below data at high energy
 - above data at low energy
- experimental data contain some energy spread from the beam

measured values are upper limits of the energy resolution

summary

EPICAL-2 measurement at DESY TB

- good understanding of the measurement
- energy resolution superior to previous EPICAL-1 (MIMOSA)
- cluster measurement provides better resolution but is worse for energy linearity (find improved clustering algorithm)
- significant impact of DESY test beam properties for precision results
- overall good agreement between data and simulation

outlook

preparing publication

