Stau study at the ILC and its implication for the muon g-2 anomaly

<u>Shin-ichi Kawada</u>, Motoi Endo (KEK), Koichi Hamaguchi, Takeo Moroi (Tokyo U), Sho Iwamoto (Eötvös Loránd U), Teppei Kitahara (Nagoya U), Taikan Suehara (Kyushu U)

Introduction: muon g-2 anomaly

4.2 σ discrepancy from the SM prediction ---> New physics?

Now the discrepancy between the experimental and theoretical values amounts to

$$\Delta a_{\mu} \equiv a_{\mu}^{\text{BNL+FNAL}} - a_{\mu}^{\text{SM}} = (25.1 \pm 5.9) \times 10^{-10} \,, \tag{5}$$

whose significance is equivalent to 4.2σ level, and the muon g-2 anomaly is reconfirmed.^{#3}

Many models proposed to explain. This talk will pick up the interpretation of [2104.03217]: SUSY interpretation (pure-Bino-contribution scenario)

arXiv:2104.03217

						ai / iv. 2 i 04.0
	BLR1	BLR2	BLR3	BLR4	\widetilde{v}^0 mass	
M_1	100	100	150	150	<u>X1</u> 11033	
$m_{\rm L} = m_{\rm R}$	150	150	200	200	$\tan\beta = 5, \ \mu_{\rm DM}$	
aneta	5	10	5	10	250	
μ	1323	678	1922	973	SLSL-13Ter	
$m_{\widetilde{\mu}_1}$	154	154	202	202	200 SLSL-8TeV	
$m_{\widetilde{\mu}_2}$	159	159	207	208		
$m_{\widetilde{ au}_1}$	113	113	159	158		
$m_{\widetilde{ au}_2}$	190	191	242	243	100	
$m_{\widetilde{ u}_{\mu, au}}$	137	136	190	190		$\widetilde{\mu}_1$ mass
$m_{\widetilde{\chi}^0_1}$	99	99	150	149	100 150 200 250 300 350 $m(\tilde{\mu}_1)$ [GeV])
$m_{\widetilde{\chi}^0_2}, m_{\widetilde{\chi}^0_3}, m_{\widetilde{\chi}^\pm_1}$	1323–1324	678-680	1922 - 1923	973–975		
$a_{\mu}^{ m SUSY} imes 10^{10}$	27	27	17	17	Can explain muon g-2 with	h 1 σ(2σ)
$\Omega_{ m DM}h^2$	0.120	0.120	0.120	0.120	+ $\Omega_{\gamma_1^0} = \Omega_{\text{dark matter}}$	
$\sigma_p^{\rm SI} \times 10^{47}~[\rm cm^2]$	1.7	3.7	0.8	1.9	λ1	
$\mu_{\gamma\gamma}$	1.01	1.01	1.01	1.01		

Muon g-2 and ILC

neutralino

At ILC500 (or even at ILC250), we can reconstruct the contribution of this loop-diagram.

Table 2: Observables necessary for the reconstruction of $a_{\mu}^{(\text{ILC})}$, and their uncertainties with $\sqrt{s} = 500 \text{ GeV}$ and $\mathcal{L} \sim 500\text{--}1000 \text{ fb}^{-1}$. Processes relevant to determine each observable are also shown. The second and third rows are the information to determine $m_{\tilde{\mu}LR}^2$. For the determination of $m_{\tilde{\chi}_1^0}$, analyses of the productions of selectrons and smuons are combined. The uncertainties in $\tilde{g}_{1,L}^{(\text{eff})}$ are those from the experiment and theory, respectively.

X	δX	$\delta_X a^{(\text{ILC})}_{\mu}$	Process	
$m_{\tilde{\mu}LR}^2$	12%	13%	$e^+e^- \rightarrow \tilde{\tau}^+ \tilde{\tau}^-$	(cross section, endpoint)
$(\sin 2\theta_{\tilde{\tau}})$	(9%)	_	$e^+e^- \rightarrow \tilde{\tau}_1^+ \tilde{\tau}_1^-$	(cross section)
$(m_{ au 2})$	(3%)	_	$e^+e^- \rightarrow \tilde{\tau}_2^+ \tilde{\tau}_2^-$	(endpoint)
$m_{ ilde{\mu}1}, m_{ ilde{\mu}2}$	$200{\rm MeV}$	0.3%	$e^+e^- ightarrow \tilde{\mu}^+ \tilde{\mu}^-$	(endpoint)
$m_{ ilde{\chi}_1^0}$	$100{\rm MeV}$	< 0.1%	$e^+e^- \rightarrow \tilde{\mu}^+\tilde{\mu}^-/\tilde{e}^+\tilde{e}^-$	(endpoint)
$\tilde{g}_{1,L}^{(\mathrm{eff})}$	a few+1 $\%$	a few+1 $\%$	$e^+e^- \rightarrow \tilde{e}^+_L \tilde{e}^R$	(cross section)
${\widetilde g}_{1,R}^{({ m eff})}$	1 %	0.9%	$e^+e^- \rightarrow \tilde{e}^+_R \tilde{e}^R$	(cross section)

- ALL measurable

This study: Stau measurement at the ILC

neutralino

Approximately $\Delta a_{\mu}^{(B)} \propto m_{\tilde{u}LR}^2$ Need smuon left-right mixing measurement Generally, it is difficult to measure directly, but we also have: $m_{\tilde{\mu}LR}^2 = \frac{m_{\mu}}{m_{\tau}} m_{\tilde{\tau}LR}^2$ Need stau mass and mixing measurement

Analysis setup

- ILC500 with BLR1 parametrization (p3)
- eLpR (P(e-,e+) = (-0.8,+0.3)) and eRpL (P(e-,e+) = (+0.8,-0.3)): 1.6 ab⁻¹ both
- SUSY MC sample production: DELPHES + ILC generic detector card
- SM background (~200M MC events in total)
 - aa_2f (2-photon process): SGV sample due to huge cross-section but old (~8 years)
 - others: ALL ILD-IDR 500 GeV full simulation samples
- Tau reconstruction: TaJetClustering with default settings

Statistics (no cuts, 1.6 ab⁻¹)

eLpR	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$	SM bkg
No cuts	4.59*10 ⁴	8.57*10 ⁴	1.59*10 ⁵	4.31*10 ⁴	1.49*10 ⁵	4.65*10 ⁴	2.62*10 ⁴	4.39*10 ⁹

eRpL	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$	SM bkg
No cuts	3.57*10 ⁴	8.75*10 ⁴	4.15*10 ⁴	1.48*10 ⁵	1.39*10 ⁵	4.21*10 ⁴	2.08*10 ⁴	4.34*10 ⁹

O(10⁴-10⁵) stau events vs O(10⁹) SM bkg Clearly need to design cuts to reject SM bkg

Design of precuts

- pre1: N_{tau} == 2
- pre2: $E_{tau+} = 0, E_{tau-} = 0$
- pre3: N_{e-PFO} <=1
- pre4: N_(tau--->e) <= 1
- pre5: N_{mu-PFO} <= 1
- pre6: N_(tau--->mu) <= 1
- pre7: $N_{chargedPFO}$ except tau <= 1
- pre8: N_{neutralPFO} except tau<= 5

equivalent to require opposite charged tau

sacrifice same flavor lepton events ~6% stau events will be rejected can reject more backgrounds

reject high multiplicity events

After precuts (1.6 ab⁻¹)

eLpR	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$	SM bkg
No cuts	4.59*10 ⁴	8.57*10 ⁴	1.59*10 ⁵	4.31*10 ⁴	1.49*10 ⁵	4.65*10 ⁴	2.62*10 ⁴	4.39*10 ⁹
precuts	0	0	0	0	5.37*10 ⁴	3.04*10 ⁴	1.24*10 ⁴	1.14*10 ⁹

eRpL	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$	SM bkg
No cuts	3.57*10 ⁴	8.75*10 ⁴	4.15*10 ⁴	1.48*10 ⁵	1.39*10 ⁵	4.21*10 ⁴	2.08*10 ⁴	4.34*10 ⁹
precuts	0	0	0	0	5.00*10 ⁴	2.76*10 ⁴	9.82*10 ³	1.14*10 ⁹

O(10⁴) stau events vs O(10⁹) SM bkg Still lots of SM bkg, especially aa_II

Cut design

- Cut1: $\frac{\theta_{acop}}{\pi} > 0.05$
- Cut2: $20 < E_{vis} < 300 \text{ GeV}$
- Cut3: $M_{\rm inv} > 200 {\rm ~GeV}$
- Cut4: $|\cos \theta_{\rm miss}| < 0.85$
- Cut5: missing $P_t > 20 \text{ GeV}$
- Cut6: $M_{\tau\tau} > 20 \text{ GeV}$
- Cut7: $|\cos \theta_{\tau^{\pm}}| < 0.9$

Example plot

 $\theta_{\rm acop}/\pi$: mainly for background rejection (eLpR) otherwise we can see nothing

 $E_{\tau^{-}}$ after all cuts (eRpL) now it is possible to see stau event distribution

After Cuts1-7 (1.6 ab⁻¹)

eLpR	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$	SM bkg
No cuts	4.59*10 ⁴	8.57*10 ⁴	1.59*10 ⁵	4.31*10 ⁴	1.49*10 ⁵	4.65*10 ⁴	2.62*10 ⁴	4.39*10 ⁹
precuts	0	0	0	0	5.37*10 ⁴	3.04*10 ⁴	1.24*10 ⁴	1.14*10 ⁹
Cuts1-7	0	0	0	0	8.28*10 ³	1.89*10 ⁴	6.45*10 ³	4.56*10 ⁴

eRpL	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R} \qquad \widetilde{\mu_L}\widetilde{\mu_L}$		$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$	SM bkg
No cuts	3.57*10 ⁴	8.75*10 ⁴	4.15*10 ⁴	1.48*10 ⁵	1.39*10 ⁵	4.21*10 ⁴	2.08*10 ⁴	4.34*10 ⁹
precuts	0	0	0	0	5.00*10 ⁴	2.76*10 ⁴	9.82*10 ³	1.14*10 ⁹
Cuts1-7	0	0	0	0	7.65*10 ³	1.71*10 ⁴	5.09*10 ³	1.45*10 ⁴

O(10³-10⁴) stau events vs O(10⁴) SM bkg Less backgrounds in eRpL

Stau Measurement (eRpL) (Work in progress, results are preliminary)

Need to get from the analysis:

- $\tilde{\tau}_2$ -pair production endpoint (theory: 150.2 GeV)
- $\tilde{\tau_1}$ -pair production endpoint (theory: 55.0 GeV)
- $\widetilde{\tau_1}\widetilde{\tau_2}$ production event count

Can obtain:

- $M_{\widetilde{\tau_2}}$ and $M_{\widetilde{\tau_1}}$
- $\sigma(\widetilde{\tau_2}\widetilde{\tau_2})$ and $\sigma(\widetilde{\tau_1}\widetilde{\tau_2})$
- mixing angle $\sin 2\theta_{\tilde{\tau}}$

Assumption:

- mass of neutralino can determine from other SUSY particle measurement (= 99 GeV)
- aa_2f backgrounds can be vetoed using BeamCal

$\widetilde{\tau_2}$ endpoint measurement

$\widetilde{\tau_1}$ endpoint measurement

Summary

- Muon g-2 anomaly is a window to new physics
- SUSY model [2104.03217] can explain this anomaly
- Generated MC samples for realistic estimation at the ILC500
- Designed cuts to reject huge amount of SM background
- (preliminary) can determine ~0.2%/2.5% for stau1/stau2 masses
- Will determine cross-section and mixing angle
- Will write a white paper as Snowmass contribution

BACKUP

Muon g-2 anomaly + SUSY interpretation

The SUSY contributions to the muon g - 2 can be sizable when at least *three* SUSY multiplets are as light as $\mathcal{O}(100)$ GeV. They are classified into four types: "WHL", "BHL", "BHR", and "BLR", where W, B, H, L, and R stand for wino, bino, higgsino, left-handed and right-handed smuons, respectively. Under the mass-insertion approximation, these four types are given as $[23]^{\#4}$

$$a_{\mu}^{\text{WHL}} = \frac{\alpha_2}{4\pi} \frac{m_{\mu}^2}{M_2 \mu} \tan \beta \cdot f_C \left(\frac{M_2^2}{m_{\tilde{\nu}_{\mu}}^2}, \frac{\mu^2}{m_{\tilde{\nu}_{\mu}}^2} \right) - \frac{\alpha_2}{8\pi} \frac{m_{\mu}^2}{M_2 \mu} \tan \beta \cdot f_N \left(\frac{M_2^2}{m_{\tilde{\mu}_{L}}^2}, \frac{\mu^2}{m_{\tilde{\mu}_{L}}^2} \right), \quad (6)$$

$$a_{\mu}^{\text{BHL}} = \frac{\alpha_Y}{8\pi} \frac{m_{\mu}^2}{M_1 \mu} \tan \beta \cdot f_N \left(\frac{M_1^2}{m_{\tilde{\mu}_{L}}^2}, \frac{\mu^2}{m_{\tilde{\mu}_{L}}^2} \right), \quad (7)$$

$$a_{\mu}^{\text{BHR}} = -\frac{\alpha_Y}{4\pi} \frac{m_{\mu}^2}{M_1 \mu} \tan \beta \cdot f_N \left(\frac{M_1^2}{m_{\tilde{\mu}_{R}}^2}, \frac{\mu^2}{m_{\tilde{\mu}_{R}}^2} \right), \quad (8)$$

$$a_{\mu}^{\text{BLR}} = \frac{\alpha_Y}{4\pi} \frac{m_{\mu}^2 M_1 \mu}{m_{\tilde{\mu}_{L}}^2 m_{\tilde{\mu}_{R}}^2} \tan \beta \cdot f_N \left(\frac{m_{\tilde{\mu}_{L}}^2}{M_1^2}, \frac{m_{\tilde{\mu}_{R}}^2}{M_1^2} \right), \quad (9)$$

Two-body decay kinematics (1)

• In the end, we have

•
$$E^+ = \frac{\sqrt{s}}{4} \left[1 - \left(\frac{m_{\chi}}{m_{\text{SUSY}}}\right)^2 \right] \left[1 + \sqrt{1 - 4 \left(\frac{m_{\text{SUSY}}}{\sqrt{s}}\right)^2} \right]$$

• $E^- = \frac{\sqrt{s}}{4} \left[1 - \left(\frac{m_{\chi}}{m_{\text{SUSY}}}\right)^2 \right] \left[1 - \sqrt{1 - 4 \left(\frac{m_{\text{SUSY}}}{\sqrt{s}}\right)^2} \right]$

- where E^+/E^- is the maximum/minimum energy of lepton (electron/positron/muon/tau), $m_{\rm SUSY}$ is the mass of SUSY particle (selectron/smuon/stau), $\sqrt{s} = 500$ GeV in this analysis, and m_{χ} is the neutralino mass and equals to 99 GeV on BLR1 parametrization
- Ignored lepton masses

Two-body decay kinematics (2)

 $\sqrt{s} = 500 \text{ GeV}, \ \widetilde{\chi_1^0} = 99 \text{ GeV}, \text{ ignored lepton masses}$

SUSY particle	mass (GeV)	<i>E</i> ⁺ (GeV)	<i>E</i> ⁻ (GeV)
$\widetilde{e_L}$	157	133.9	16.7
$\widetilde{e_R}$	156	133.0	16.3
$\widetilde{\mu_L}$	158	134.8	17.1
$\widetilde{\mu_R}$	154	131.1	15.6
$\widetilde{ au_1}$	113	55.0	3.1
$\widetilde{ au_2}$	190	150.2	31.9

Produced events (1)

$\begin{array}{c} Process \\ e^+e^- \rightarrow \end{array}$	Pol (e-, e+) (%)	Xsec (fb)	N = L*Xsec (Assume L = 4 ab ⁻¹)	N = L*Xsec (Assume L = 1.6 ab ⁻¹)	N_generated	process ID
$\widetilde{e_L}^+ \widetilde{e_L}^-$	-80/+30	28.7091 +- 0.0012	114836	45935	500K	1
$\widetilde{e_L}^+ \widetilde{e_L}^-$	+80/-30	22.30497 +- 0.00071	89220	35688	500K	2
$\widetilde{e_R}^+ \widetilde{e_R}^-$	-80/+30	53.5626 +- 0.0019	214250	85700	1M	3
$\widetilde{e_R}^+ \widetilde{e_R}^-$	+80/-30	54.6909 +- 0.022	218764	87505	1M	4
$\widetilde{\mu_L}^+ \widetilde{\mu_L}^-$	-80/+30	99.1388 +- 0.0079	396555	158622	1.5M	5
$\widetilde{\mu_L}^+ \widetilde{\mu_L}^-$	+80/-30	25.9426 +- 0.0021	103770	41508	500K	6
$\widetilde{\mu_R}^+ \widetilde{\mu_R}^-$	-80/+30	26.9622 +- 0.0021	107849	43140	500K	7
$\widetilde{\mu_R}^+ \widetilde{\mu_R}^-$	+80/-30	92.4999 +- 0.0072	370000	148000	1.5M	8

1.6 ab⁻¹ is the integrated luminosity of ILC500 with -80/+30 and +80/-30

Produced events (2)

$\begin{array}{c} Process \\ e^+e^- \rightarrow \end{array}$	Pol (e-, e+) (%)	Xsec (fb)	N = L*Xsec (Assume L = 4 ab ⁻¹)	N = L*Xsec (Assume L = 1.6 ab ⁻¹)	N_generated	process ID
$\widetilde{\tau_1}^+ \widetilde{\tau_1}^-$	-80/+30	92.9890 +- 0.0063	371956	148782	1.5M	9
$\widetilde{\tau_1}^+ \widetilde{\tau_1}^-$	+80/-30	86.6444 +- 0.0059	346578	138631	1.5M	10
$\tilde{\tau_2}^+ \tilde{\tau_2}^-$	-80/+30	29.0410 +- 0.0033	116164	46466	500K	11
$\widetilde{ au_2}^+ \widetilde{ au_2}^-$	+80/-30	26.3214 +- 0.0029	105286	42114	500K	12
$\widetilde{\tau_1}^+ \widetilde{\tau_2}^-$	-80/+30	8.18989 +- 0.00062	32760	13104	200K	13
$\widetilde{\tau_1}^+ \widetilde{\tau_2}^-$	+80/-30	6.48573 +- 0.00050	25943	10377	200K	14
$\widetilde{\tau_2}^+ \widetilde{\tau_1}^-$	-80/+30	8.19128 +- 0.00062	32765	13106	200K	15
$\widetilde{\tau_2}^+ \widetilde{\tau_1}^-$	+80/-30	6.48553 +- 0.00050	25942	10377	200K	16

1.6 ab⁻¹ is the integrated luminosity of ILC500 with -80/+30 and +80/-30

Potential problem

- The spin information is not stored in stau events
 - This might affect to the decay products of tau
 - It is OK for SM world (e.g.: Keita's study)
 - So far, no special treatment applied

Physics analysis

- Made everything luminosity-weighted
 - Considered MC statistics
 - eLpR/eRpL for (e-, e+) = (-80%, +30%)/(+80%, -30%)
 - 1.6 ab⁻¹ for both polarization (ILC500 full statistics)
- Included ALL available SM background MC samples: in total ~200M MC samples

SM background (1)

- Added ALL available IDR samples
 - /gpfs/group/ilc/soft/samples/mc-opt-3/ild/dst-merged/500-TDR_ws/PROCESS/ILD_I5_o1_v02/v02-00-01/~~~~.slcio
 - processes (h = hadronic, l = leptonic, sl = semileptonic)
 - all 2f (bhabha, h, l)
 - all 4f (singleW_l/sl, singleZee_l/sl, singleZnunu_l/sl, singleZsingleWMix_l, WW_h/l/sl, ZZ_h/l/sl, ZZWWMix_h/l)
 - all 5f
 - all 6f (eeWW, IIWW, ttbar, vvWW, xxWW, xxxxZ, yyyyZ)
 - all aa_4f
 - all higgs_ffh (qqh/llh/nnh, no specific decays)

SM background (2)

- Also added ALL aa_2f created by SGV
 - /ghi/fs02/orig_root_fs02/ilc/grid/storm/users/berggren/mc-dbd/sgvdst_6/500-TDR_ws/aa_2f/~~~~.slcio
 - ~8 years old samples (even used in my PhD thesis)
 - 4 types of processes: aa_ee, aa_ll, aa_xx, aa_yy
- Since the cross-section is huge, there are no full simulation samples of aa_2f @ 500 GeV.
- SGV is pretty much faster, but not enough MC samples (event weight ~ 20, which means 1 MC event corresponds to > 20 real events)

Tau clustering: TaJetClustering

- Originally developed for tau reconstruction under the jet environment
- Treat inclusively, no special treatments for different tau decay
- Used with all default values
 - MinimumJetEnergy = 3 GeV: minimum energy for reconstructed tau
 - MinimumTrackEnergy = 2 GeV: minimum energy for tau seed
 - MinimumTrackEnergyAssoc = 2 GeV: minimum energy for associate particle for tau seed
- This setting might be problematic for $\widetilde{\tau_1}$
 - Theoretical E+ = 55.0 GeV, E- = 3.1 GeV for τ . Its decay products have even lower energy.

PID information

- Now using getParticleIDs instead of getType
- In analysis, DELPHES and full simulation samples information are changed to PID information, not getType information anymore.
 - DELPHES only have 2 algorithms, picked up higher probability one
 - Full simulation: pick up LikelihoodPID
- SGV can only use PID information (due to old?), but performance of PID maybe not so good.
 - e.g.: 2muons + missing in MC truth, 2pions in PID
 - Only one PID is available

Statistics (eLpR)

SUSY	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e}$	$\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu}$	$\widetilde{u}_R \qquad \widetilde{\tau}$	$\widetilde{\tau}_1^{+}\widetilde{\tau_1^{-}}$	$\widetilde{ au_2^+}$	$\widetilde{\tau_2}$	$\widetilde{ au_1}\widetilde{ au_2}$										
No cuts	4.59*10 ⁴	8.57	*10 ⁴ 1.	59*10 ⁵	4.31*	*10 ⁴ 1.4	9*10 ⁵	4.65	5*10 ⁴	2.62	*104									
SM bkg (*	1) Bhab	ha	2f_l	2f_	h 4	4f_sw_l	4f_s	w_sl	4f_9	sze_l	4f_s	sze_sl	4f_sz	n_l	4f_szr	n_sl	4f_sz	zsw_l		
No cuts	5.40*1	06 5	5.44*10 ⁶	3.14*	10 ⁷ 2	2.59*10 ⁶	7.76	5*10 ⁶	1.14	4*10 ⁷	3.0	1*10 ⁶	2.62*/	10 ⁵	8.94*	10 ⁵	1.04	*10 ⁶		
SM bkg (2	2) 4f_W\	N_ h	4f_WW	_l 4f_	_WW_s	sl 4f_Z	Z_h	4f_ZZ	Z_I	4f_ZZ	_sl	4f_ZZ\	WW_h	4f_Z	zww_	J	5 f	ee	ww	IIWW
No cuts	7.91*	10 ⁶	7.40*10	0 ⁵ 8.	91*10 ⁶	6.52*	10 ⁵	5.82* <i>′</i>	104	5.86*′	10 ⁵	5.99	*10 ⁶	7.6	8*10 ⁵	1	24*10 ⁴	⁵ 4.6	1*10 ⁴	1.94*10 ⁴
SM bkg (3) vvW\	N	xxWW	xxx	κΖ	ууууΖ	ttba	ar	AA	4f	AAe	е	AAII	A	Add	hig	gs			
No cuts	3.23*1	04 3	3.65*10 ⁴	1.29*	10 ³ 2	2.80*10 ³	1.47*	10 ⁶	3.36*	10 ⁵	1.15*1	10 ⁹ 2	.25*10 ⁹	8.9	*10 ⁸	4.12	*10 ⁵			

stau events: $O(10^4-10^5)$ SUSY background: O(10⁴-10⁵) SM background: O(10⁷) aa_2f: O(10⁹)

SUSY	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$
No cuts	4.59*10 ⁴	8.57*10 ⁴	1.59*10 ⁵	4.31*10 ⁴	1.49*10 ⁵	4.65*10 ⁴	2.62*10 ⁴
pre1	4.31*10 ⁴	8.03*10 ⁴	1.49*10 ⁵	4.07*10 ⁴	5.89*10 ⁴	3.28*10 ⁴	1.35*10 ⁴
pre2	4.31*10 ⁴	8.03*10 ⁴	1.49*10 ⁵	4.07*10 ⁴	5.86*10 ⁴	3.28*10 ⁴	1.35*10 ⁴
pre3	9.59*10 ³	1.78*10 ³	1.49*10 ⁵	4.07*10 ⁴	5.68*10 ⁴	3.19*10 ⁴	1.31*10 ⁴
pre4	0	0	1.49*10 ⁵	4.07*10 ⁴	5.62*10 ⁴	3.16*10 ⁴	1.30*10 ⁴
pre5	0	0	1.36*10 ⁴	3.75*10 ³	5.40*10 ⁴	3.06*10 ⁴	1.25*10 ⁴
pre6	0	0	0	0	5.38*10 ⁴	3.04*10 ⁴	1.24*10 ⁴
pre7	0	0	0	0	5.37*10 ⁴	3.04*10 ⁴	1.24*10 ⁴
pre8	0	0	0	0	5.37*10 ⁴	3.04*10 ⁴	1.24*10 ⁴

SM bkg (1)	Bhabha	2f_l	2f_h	4f_sw_l	4f_sw_sl	4f_sze_l	4f_sze_sl	4f_szn_l	4f_szn_sl	4f_szsw_l
No cuts	5.40*10 ⁶	5.44*10 ⁶	3.14*10 ⁷	2.59*10 ⁶	7.76*10 ⁶	1.14*10 ⁷	3.01*10 ⁶	2.62*10 ⁵	8.94*10 ⁵	1.04*10 ⁶
pre1	2.61*10 ⁶	3.09*10 ⁶	8.23*10 ⁴	1.49*10 ⁶	3.72*10 ⁵	1.86*10 ⁶	2.55*10 ⁵	7.51*10 ⁴	4.21*10 ³	6.03*10 ⁵
pre2	2.58*10 ⁶	3.06*10 ⁶	5.78*10 ⁴	1.48*10 ⁶	2.66*104	1.62*10 ⁶	2.31*10 ⁵	7.40*10 ⁴	2.84*10 ³	5.95*10 ⁵
pre3	9.41*10 ⁴	2.01*10 ⁶	6.64*10 ³	6.31*10 ⁵	3.38 [*] 10⁴	5.67*10 ⁵	5.60*10 ³	5.01*10 ⁴	619	2.62*10 ⁴
pre4	8.44*10 ³	1.82*10 ⁶	5.41*10 ³	6.44*10 ⁴	4.75*10 ³	4.85*10 ⁵	2.11*10 ³	4.75*10 ⁴	570	2.96*10 ³
pre5	8.04*10 ³	5.42*10 ⁵	3.24*10 ³	5.54*10 ⁴	2.96*10 ³	1.48*10 ⁵	1.39*10 ³	1.49*10 ⁴	384	2.82*10 ³
pre6	7.75*10 ³	4.58*10 ⁵	2.99*10 ³	4.31*10 ⁴	2.88*10 ³	1.28*10 ⁵	1.31*10 ³	1.36*10 ⁴	359	2.69*10 ³
pre7	5.62*10 ³	3.30*10 ⁵	144	3.32*104	0	9.80*10 ⁴	197	9.88*10 ³	12.4	2.01*10 ³
pre8	4.76*10 ³	2.94*10 ⁵	21.4	3.10*104	0	7.18*10 ⁴	66.4	8.94*10 ³	12.4	1.86*10 ³

2f_l, 4f_singleW_l, 4f_singleZee_l, 4f_singleZnunu_l: O(10³-10⁵) semileptonic events: < O(10²)

SM bkg (2)	4f_WW_h	4f_WW_I	4f_WW_sl	4f_ZZ_h	4f_ZZ_I	4f_ZZ_sl	4f_ZZWW_h	4f_ZZWW_I	5f	eeWW	IIWW /
No cuts	7.91*10 ⁶	7.40*10 ⁵	8.91*10 ⁶	6.52*10 ⁵	5.82*10 ⁴	5.86*10 ⁵	5.99*10 ⁶	7.68*10 ⁵	1.24*10 ⁵	4.61*10 ⁴	1.94*104
pre1	2.85*10 ⁴	4.46*10 ⁵	4.12*10 ⁵	2.50*10 ³	2.15*10 ⁴	1.07*10 ⁵	2.46*10 ⁴	4.68*10 ⁵	3.05*10 ⁴	1.35*10 ⁴	5.49*10 ³
pre2	1.67*104	4.41*10 ⁵	2.92*10 ⁵	1.47*10 ³	2.05*10 ⁴	1.05*10 ⁵	1.48*1/0 ⁴	4.64*10 ⁵	2.03*10 ⁴	9.31*10 ³	4.26*10 ³
pre3	1.70*10 ³	2.90*10 ⁵	7.79*10 ⁴	82.6	1.27*10 ⁴	2.23*10 ⁴	1.59*10 ³	3.08*10 ⁵	2.38*10 ³	378	727
pre4	1.63*10 ³	2.43*10 ⁵	7.14*10 ⁴	66.1	1.17*104	2.15*10 ⁴	1.44*10 ³	2.79*10 ⁵	1.48*10 ³	180	614
pre5	765	1.53*10 ⁵	3.30*104	33.1	2.73*10 ³	3.40*10 ³	595	7.42*10 ⁴	571	87.8	90.1
pre6	746	9.42*10 ⁴	2.59*10 ⁴	16.5	2.40*10 ³	3.17*10 ³	595	6.31*10 ⁴	524	75.8	77.2
pre7	0	7.33*104	131	0	1.57*10 ³	23.0	0	4.63*10 ⁴	251	34.5	6.49
pre8	0	6.86*10 ⁴	56.1	0	1.38*10 ³	1.87	0	4.28*10 ⁴	190	21.7	3.76

4f_WW_I, 4f_ZZWW_I: O(10⁴) semileptonic events: < O(10²) hadronic events: 0

SM bkg (3)	vvWW	xxWW	xxxxZ	ууууΖ /	ttbar	AA4f	AAee	AAII	AAqq	higgs
No cuts	3.23*10 ⁴	3.65*104	1.29*10 ³	2.80*10 ³	1.47*106	3.36*10 ⁵	1.15*10 ⁹	2.25*10 ⁹	8.91*10 ⁸	4.12*10 ⁵
pre1	3.85*10 ³	4.20*10 ³	59.4	500	1.42*10 ⁵	7.63*10 ⁴	8.94*10 ⁸	1.12*10 ⁹	5.46*10 ⁶	4.07*10 ⁴
pre2	3.51*10 ³	3.61*10 ³	54.2	401	1.27*10 ⁵	5.74*10 ⁴	8.92*10 ⁸	1.11*10 ⁹	3.64*10 ⁶	3.87*10 ⁴
pre3	1.50*10 ³	509	3.04	49.3	1.23 [*] 10 ⁴	1.38*10 ⁴	4.39*10 ⁷	1.10*10 ⁹	3.16*10 ⁶	1.14*10 ⁴
pre4	936	372	2.88	43.5	9.68*10 ³	1.11*104	4.39*10 ⁷	1.10*10 ⁹	3.16*10 ⁶	9.38*10 ³
pre5	474	81.9	0.312	9.67	1.48*10 ³	3.36*10 ³	4.36*10 ⁷	1.10*10 ⁹	2.73*10 ⁶	6.08*10 ³
pre6	391	68.0	0.312	8.74	1.28*10 ³	3.03*10 ³	4.36*10 ⁷	1.10*10 ⁹	2.73*10 ⁶	5.65*10 ³
pre7	250	0.562	0.0478	2.51	0	1.43*10 ³	4.36*10 ⁷	1.10*10 ⁹	5.03*10 ⁵	3.47*10 ³
pre8	232	0.0624	0.0477	0.908	0	1.18*10 ³	4.36*10 ⁷	1.10*10 ⁹	4.16*10 ⁵	3.16*10 ³

aa_II: O(10 ⁹)
aa_ee: O(10 ⁷)
aa_qq: O(10 ⁵)
6f high multiplicity events: negligible

Summary of precuts

- Already stau1-pair process is rejected by 64%, still order of O(10⁴) statistics.
 - Due to default setting of TaJetClustering and its lower energy of decay products
- High multiplicity events are now almost negligible.
- SGV-based samples cannot reject by requiring N_(e/mu-PFO) because such information is not stored in reconstructed PFO. This is maybe due to the performance of PID.
- 198M ---> 29M MC events

Reject more aa_2f and save stau events

- Stau events: O(10⁴) for all channels
- aa_2f: O(10⁹) at maximum
- Need to design some cuts to reduce the background level

Cut1 & Cut2

Cut3 & Cut4

Cut5 & Cut6

Cut7

SUSY	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$
No cuts	4.59*10 ⁴	8.57*10 ⁴	1.59*10 ⁵	4.31*10 ⁴	1.49*10 ⁵	4.65*10 ⁴	2.62*104
precuts	0	0	0	0	5.37*10 ⁴	3.04*10 ⁴	1.24*10 ⁴
Cut1	0	0	0	0	4.29*10 ⁴	2.79*10 ⁴	1.09*10 ⁴
Cut2	0	0	0	0	3.69*10 ⁴	2.77*10 ⁴	1.06*10 ⁴
Cut3	0	0	0	0	3.69*10 ⁴	2.77*10 ⁴	1.06*10 ⁴
Cut4	0	0	0	0	3.22*10 ⁴	2.45*10 ⁴	9.23*10 ³
Cut5	0	0	0	0	1.06*10 ⁴	2.30*10 ⁴	7.76*10 ³
Cut6	0	0	0	0	8.80*10 ³	2.16*10 ⁴	6.93*10 ³
Cut7	0	0	0	0	8.28*10 ³	1.89*10 ⁴	6.45*10 ³

SM bkg (1)	Bhabha	2f_l	2f_h	4f_sw_l	4f_sw_sl	4f_sze_l	4f_sze_sl	4f_szn_l	4f_szn_sl	4f_szsw_l
No cuts	5.40*10 ⁶	5.44*10 ⁶	3.14*10 ⁷	2.59*10 ⁶	7.76*10 ⁶	1.14*10 ⁷	3.01*106	2.62*10 ⁵	8.94*10 ⁵	1.04*10 ⁶
precuts	4.76*10 ³	2.94*10 ⁵	21.4	3.10*10 ⁴	0	7.18*10 ⁴	66.4	8.94*10 ³	12.4	1.86*10 ³
Cut1	2.74*10 ³	4.86*10 ⁴	0	2.74*10 ⁴	0	6.55*10 ⁴	66.4	8.29*10 ³	12.4	1.70*10 ³
Cut2	873	1.40*10 ⁴	0	2.14*10 ⁴	0	4.10*10 ⁴	41.7	7.82*10 ³	12.4	1.41*10 ³
Cut3	327	8.08*10 ³	þ	1.69*104	0	2.14*10 ⁴	41.7	7.61*10 ³	12.4	1.08*10 ³
Cut4	83.4	2.57*10 ³	0	9.41*10 ³	0	4.62*10 ³	1.05	5.46*10 ³	12.4	606
Cut5	0	2.07*10 ³	0	8.80*10 ³	0	55.5	0	4.72*10 ³	12.4	557
Cut6	0	1.75*10 ³	0	8.34*10 ³	0	39.6	0	4.27*10 ³	0	475
Cut7	0	1.29*10 ³	0	5.47*10 ³	0	31.7	0	3.78*10 ³	0	366

hadronic and semileptonic events are now negligible 4f_singleW_leptonic: 5.47*10³ 2f_leptonic: 1.29*10³

4f_singleZnunu_leptonic: 3.78*10³

SM bkg (2)	4f_WW_h	4f_WW_I	4f_WW_sl	4f_ZZ_h	4f_ZZ_I	4f_ZZ_sl	4f_ZZWW_h	4f_ZZWW_I	5f	eeWW /	IIWW
No cuts	7.91*10 ⁶	7.40*10 ⁵	8.91*10 ⁶	6.52*10 ⁵	5.82*10 ⁴	5.86*10 ⁵	5.99*10 ⁶	7.68*10 ⁵	1.24*10 ⁵	4.61*104	1.94*104
precuts	0	6.86*10 ⁴	56.1	0	1.38*10 ³	1.87	0	4.28*10 ⁴	190	21.7	3.76
Cut1	0	5.42*10 ⁴	56.1	0	1.10*10 ³	1.87	0	3.40*10 ⁴	178	19.8	3.17
Cut2	0	4.26*10 ⁴	0.112	0	1.07*10 ³	1.87	0	3.10*10 ⁴	159	13.4	3.05
Cut3	0	3.37*10 ⁴	0.112	þ	930	o	0	2.93*10 ⁴	141	10.7	2,49
Cut4	0	2.24*10 ⁴	0.112	0	511	0	0	1.85*10 ⁴	60.4	4.58	1.35
Cut5	0	2.15*10 ⁴	0.112	0	490	0	0	1.55*10 ⁴	53.9	4.43	1.03
Cut6	0	2.13*10 ⁴	0	0	443	0	0	1.53*10 ⁴	49.8	3.71	1.03
Cut7	0	1.26*10 ⁴	0	0	373	0	0	9.34*10 ³	41.3	3.26	0.833

hadronic and semileptonic events are now negligible 4f_WW_leptonic: 1.26*10⁴ 4f_ZZWW_leptonic: 9.34*10³

SM bkg (3)	vvWW	xxWW	xxxxZ	ууууΖ /	ttbar	AA4f	AAee	AAII	AAqq	higgs
No cuts	3.23*10 ⁴	3.65*104	1.29*10 ³	2.80*10 ³	1.47*106	3.36*10 ⁵	1.15*10 ⁹	2.25*10 ⁹	8.91*10 ⁸	4.12*10 ⁵
precuts	232	0.0624	0.0477	0.908	0	1.18*10 ³	4.36*10 ⁷	1.10*10 ⁹	4.16*10 ⁵	3.16*10 ³
Cut1	211	0	0.0477	0.813	0	1.09*10 ³	5.53*10 ⁶	1.74*10 ⁸	1.18*10 ⁵	2.90*10 ³
Cut2	208	Ο	0.0477	0.641	0	1.02*10 ³	2.98*10 ⁶	8.66*10 ⁷	6.95*10 ⁴	2.87*10 ³
Cut3	202	þ	0.0477	0.543	o	972	2.03*10 ⁶	5.92*10 ⁷	5.76*10 ⁴	2.84*10 ³
Cut4	155	0	0	0.0552	0	585	1.92*10 ⁵	3.75*10 ⁶	1.08*10 ³	2.24*10 ³
Cut5	143	0	0	~0	0	511	1.43*10 ³	2.16*10 ⁴	3.20	2.04*10 ³
Cut6	137	0	0	~0	0	453	1.34*10 ³	1.47*10 ⁴	3.20	1.95*10 ³
Cut7	111	0	0	0	0	368	1.25*10 ³	8.85*10 ³	3.20	1.71*10 ³

hadronic and semileptonic events are now negligible AA_ee: $1.25*10^3$ AA_II: $8.85*10^3$

Statistics (eRpL)

SUSY	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e}$	$\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	ξ μ	$\widetilde{\mu}_R \widetilde{\mu}_R$	$\widehat{\tau_1}$	$\widetilde{t}\widetilde{\tau_1}$	$\widetilde{ au_2^+}$	$\widetilde{\tau_2^-}$	$\widetilde{\tau_1}$	$\widetilde{\tau_2}$									
No cuts	3.57*10 ⁴	8.75	*104 4	4.15*1	1.4	18*10 ⁵	1.3	9*10 ⁵	4.21	*104	2.08	*104									
SM bkg (1) Bhabl	ha	2f_l		2f_h	4f_s	w_l	4f_sv	w_sl	4f_s	sze_l	4f_	sze_s	l 4f_sz	n_l	4f_szn	_sl	4f_sz	sw_l		
No cuts	5.16*1	0 ⁶ 4	4.38*10 ⁶	⁶ 1.8	87*10 ⁷	3.07	*10 ⁵	9.15	*10 ⁵	1.13	3*10 ⁷	2.8	81*10 ⁶	2.95*	104	1.09*1	05	1.79'	10 ⁵		
SM bkg (2) 4f_W\	№_ h	4f_WV	N_I	4f_WW	_sl	4f_ZZ	Ľ_h	4f_ZZ	_	4f_ZZ	_sl	4f_ZZ	WW_h	4f_Z	zww_I		5 f	ee	ww	IIWW
No cuts	4.61*	10 ⁵	4.82*1	104	5.76*1	05	2.93*	10 ⁵ 3	3.78*1	104	3.04* <i>′</i>	10 ⁵	4.3	2*10 ⁵	6.3	7*10 ⁴	7.	20*10 ⁴	1.93	3*10 ⁴	1.63*10 ³
SM bkg (3) vvW\	N	xxWW	X	xxxZ	ууу	уZ	ttba	ır	AA4	4f	AAe	e	AAII	AA	qq	hig	gs			
No cuts	2.49*1	0 ³ 2	2.95*10 ³	3	309	1.59*	10 ³	6.37*	10 ⁵	3.36*	10 ⁵	1.15*	10 ⁹ 2	2.25*10 ⁹	8.91	*10 ⁸	1.30	*10 ⁵			

stau events: $O(10^4-10^5)$ SUSY background: O(10⁴-10⁵) SM background: O(10⁷) aa_2f: O(10⁹)

SUSY	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$
No cuts	3.57*10 ⁴	8.75*10 ⁴	4.15*10 ⁴	1.48*10 ⁵	1.39*10 ⁵	4.21*10 ⁴	2.08*10 ⁴
pre1	3.36*10 ⁴	8.18*10 ⁴	3.91*10 ⁴	1.40*10 ⁵	5.49*10 ⁴	2.97*10 ⁴	1.07*10 ⁴
pre2	3.36*10 ⁴	8.18*10 ⁴	3.91*10 ⁴	1.40*10 ⁵	5.46*10 ⁴	2.97*10 ⁴	1.07*10 ⁴
pre3	7.48*10 ³	1.83*10 ⁴	3.91*10 ⁴	1.40*10 ⁵	5.29*10 ⁴	2.89*10 ⁴	1.03*10 ⁴
pre4	0	0	3.91*10 ⁴	1.40*10 ⁵	5.23*10 ⁴	2.86*10 ⁴	1.02*10 ⁴
pre5	0	0	3.58*10 ³	1.28*10 ⁴	5.03*10 ⁴	2.77*10 ⁴	9.87*10 ³
pre6	0	0	0	0	5.00*10 ⁴	2.76*10 ⁴	9.83*10 ³
pre7	0	0	0	0	5.00*10 ⁴	2.76*10 ⁴	9.82*10 ³
pre8	0	0	0	0	5.00*10 ⁴	2.76*10 ⁴	9.82*10 ³

SM bkg (1)	Bhabha	2f_l	2f_h	4f_sw_l	4f_sw_sl	4f_sze_l	4f_sze_sl	4f_szn_l	4f_szn_sl	4f_szsw_l
No cuts	5.16*10 ⁶	4.38*10 ⁶	1.87*10 ⁷	3.07*10 ⁵	9.15*10 ⁵	1.13*10 ⁷	2.81*10 ⁶	2.95*10 ⁴	1.09*10 ⁵	1.79*10 ⁵
pre1	2.46*10 ⁶	2.40*10 ⁶	4.86*10 ⁴	1.37*10 ⁵	3.53*10 ⁴	1.83*10 ⁶	1.90*10 ⁵	8.97*10 ³	418	7.21*10 ⁴
pre2	2.44*10 ⁶	2.37*10 ⁶	3.41*10 ⁴	1.34*10 ⁵	2.53*10 ⁴	1.60*10 ⁶	1.70*10 ⁵	8.87*10 ³	289	7.03*10 ⁴
pre3	8.90*10 ⁴	1.54*10 ⁶	3.67*10 ³	5.79*10 ⁴	3.39*10 ³	5.65*10 ⁵	4.70*10 ³	5.92*10 ³	55.7	3.43*10 ³
pre4	8.05*10 ³	1.40*10 ⁶	3.08*10 ³	7.04*10 ³	547	4.84*10 ⁵	2.02*10 ³	5.54*10 ³	50.9	407
pre5	7.65*10 ³	4.15*10 ⁵	1.78*10 ³	6.01*10 ³	344	1.47*10 ⁵	1.52*10 ³	1.69*10 ³	32.3	395
pre6	7.47*10 ³	3.51*10 ⁵	1.63*10 ³	4.78*10 ³	317	1.27*10 ⁵	1.45*10 ³	1.50*10 ³	30.8	377
pre7	5.79*10 ³	2.53*10 ⁵	48.3	3.71*10 ³	0	9.70*10 ⁴	189	1.11*10 ³	0.739	274
pre8	4.84*10 ³	2.25*10 ⁵	21.1	3.45*10 ³	0	7.10*10 ⁴	90.1	1.02*10 ³	0.739	253

2f_l, 4f_singleZee_l: $O(10^4-10^5)$ semileptonic events: < $O(10^2)$

SM bkg (2)	4f_WW_h	4f_WW_I	4f_WW_sl	4f_ZZ_h	4f_ZZ_I	4f_ZZ_sl /	4f_ZZWW_h	4f_ZZWW_I	5f	eeWW	IIWW
No cuts	4.61*10 ⁵	4.82*10 ⁴	5.76*10 ⁵	2.93*10 ⁵	3.78*10 ⁴	3.04*10 ⁵	4.32*10 ⁵	6.37*10 ⁴	7.20*10 ⁴	1.93*10 ⁴	1.63*10 ³
pre1	1.85*10 ³	2.96*10 ⁴	2.74*10 ⁴	845	1.34*10 ⁴	5.36*10 ⁴	1.80*10 ³	3.54*10 ⁴	1.63*10 ⁴	4.87*10 ³	465
pre2	1.08*10 ³	2.93*10 ⁴	1.93*10 ⁴	384	1.27*10 ⁴	5.23*10 ⁴	1.10*10 ³	3.51*10 ⁴	1.11*104	3.17*10 ³	368
pre3	109	1.93*10 ⁴	5.29*10 ³	4.94	7.87*10 ³	1.13*104	141	2.32*10 ⁴	1.72*10 ³	244	65.2
pre4	105	1.63*10 ⁴	4.85*10 ³	3,96	7.29*10 ³	1.08*104	132	2.11*10 ⁴	1.20*10 ³	125	55.7
pre5	51.4	1.03*10 ⁴	2.27*10 ³	1.98	1.53*10 ³	1.84*10 ³	71.0	5.84*10 ³	426	61.7	8.27
pre6	50.2	6.48*10 ³	1.79*10 ³	0.989	1.33*10 ³	1.68*10 ³	71.0	5.03*10 ³	389	52.9	7.17
pre7	0	4.99*10 ³	9.69	0	804	11.0	0	3.69*10 ³	200	28.8	0.722
pre8	0	4.67*10 ³	5.22	0	706	0.112	0	3.42*10 ³	153	18.5	0.426

4f_WW_I, 4f_ZZ_I, 4f_ZZWW_I: O(10³) semileptonic events: < O(10) hadronic events: 0

SM bkg (3)	vvWW	xxWW	xxxxZ	ууууД	ttbar /	AA4f	AAee	AAII	AAqq	higgs
No cuts	2.49*10 ³	2.95*10 ³	309	1.59*10 ³	6.37*10 ⁵	3.36*10 ⁵	1.15*10 ⁹	2.25*10 ⁹	8.91*10 ⁸	1.30*10 ⁵
pre1	296	354	26.2	358	6.17*10 ⁴	7.63*10 ⁴	8.94*10 ⁸	1.12*10 ⁹	5.46*10 ⁶	1.77*10 ⁴
pre2	271	308	24.2	279	5.54*10 ⁴	5.74*10 ⁴	8.92*10 ⁸	1.11*10 ⁹	3.64*10 ⁶	1.70*10 ⁴
pre3	114	43.2	1.24	39.4	5.51*10 ³	1.38*10 ⁴	4.39*10 ⁷	1.10*10 ⁹	3.16*10 ⁶	3.01*10 ³
pre4	70.5	31.6	1,14	34.4	4.29*10 ³	1.11*10 ⁴	4.39*10 ⁷	1.10*10 ⁹	3.16*10 ⁶	2.55*10 ³
pre5	35.7	6.85	0.117	8.15	633	3.36*10 ³	4.36*10 ⁷	1.10*10 ⁹	2.73*10 ⁶	1.17*10 ³
pre6	29.6	5.80	0.117	7.22	556	3.03*10 ³	4.36*10 ⁷	1.10*10 ⁹	2.73*10 ⁶	1.09*10 ³
pre7	19.2	0.0346	0.00558	2.28	0	1.43*10 ³	4.36*10 ⁷	1.10*10 ⁹	5.03*10 ⁵	445
pre8	17.7	0.00373	0.00285	0.814	0	1.18*10 ³	4.36*10 ⁷	1.10*10 ⁹	4.16*10 ⁵	401

aa_ll: O(10⁹)
aa_ee: O(10⁷)
aa_qq: O(10⁵)
6f high multiplicity events: negligible

SUSY	$\widetilde{e_L}\widetilde{e_L}$	$\widetilde{e_R}\widetilde{e_R}$	$\widetilde{\mu_L}\widetilde{\mu_L}$	$\widetilde{\mu_R}\widetilde{\mu_R}$	$\widetilde{ au_1^+}\widetilde{ au_1^-}$	$\widetilde{ au_2^+}\widetilde{ au_2^-}$	$\widetilde{ au_1}\widetilde{ au_2}$
No cuts	3.57*10 ⁴	8.75*10 ⁴	4.15*10 ⁴	1.48*10 ⁵	1.39*10 ⁵	4.21*10 ⁴	2.08*10 ⁴
precuts	0	0	0	0	5.00*10 ⁴	2.76*10 ⁴	9.82*10 ³
Cut1	0	0	0	0	4.00*10 ⁴	2.53*10 ⁴	8.63*10 ³
Cut2	0	0	0	0	3.44*10 ⁴	2.51*10 ⁴	8.34*10 ³
Cut3	0	0	0	0	3.44*10 ⁴	2.51*10 ⁴	8.34*10 ³
Cut4	0	0	0	0	2.99*10 ⁴	2.21*10 ⁴	7.29*10 ³
Cut5	0	0	0	0	9.82*10 ³	2.08*10 ⁴	6.12*10 ³
Cut6	0	0	0	0	8.13*10 ³	1.95*10 ⁴	5.47*10 ³
Cut7	0	0	0	0	7.65*10 ³	1.71*10 ⁴	5.09*10 ³

SM bkg (1)	Bhabha	2f_l	2f_h	4f_sw_l	4f_sw_sl	4f_sze_l	4f_sze_sl	4f_szn_l	4f_szn_sl	4f_szsw_l
No cuts	5.16*10 ⁶	4.38*10 ⁶	1.87*10 ⁷	3.07*10 ⁵	9.15*10 ⁵	1.13*10 ⁷	2.81*10 ⁶	2.95*10 ⁴	1.09*10 ⁵	1.79*10 ⁵
precuts	4.84*10 ³	2.25*10 ⁵	21.1	3.45*10 ³	0	7.10*10 ⁴	90.1	1.02*10 ³	0.739	253
Cut1	2.95*10 ³	3.60*104	0	3.12*10 ³	0	6.49*10 ⁴	90.1	943	0.739	235
Cut2	769	9.61*10 ³	0	2.64*10 ³	0	4.05*10 ⁴	69.6	905	0.739	189
Cut3	289	5.56*10 ³	þ	1.99*10 ³	þ	2.11*10 ⁴	69.6	821	0.739	122
Cut4	63.1	1.66*10 ³	0	934	0	4.74*10 ³	17.6	526	0.739	59.8
Cut5	0	1.31*10 ³	0	881	0	48.0	0	473	0.739	56.9
Cut6	0	1.06*10 ³	0	822	0	40.0	0	429	0	48.0
Cut7	0	709	0	493	0	31.4	0	375	0	28.9

hadronic and semileptonic events are now negligible

2f_leptonic: 709

4f_singleW_leptonic: 493

4f_singleZnunu_leptonic: 375

SM bkg (2)	4f_WW_h	4f_WW_I	4f_WW_sl/	4f_ZZ_h	4f_ZZ_I	4f_ZZ_sl	4f_ZZWW_h	4f_ZZWW_I	5f	eeWW /	IIWW
No cuts	4.61*10 ⁵	4.82*10 ⁴	5.76*10 ⁵	2.93*10 ⁵	3.78*10 ⁴	3.04*10 ⁵	4.32*10 ⁵	6.37*10 ⁴	7.20*10 ⁴	1.93*104	1.63*10 ³
precuts	0	4.67*10 ³	5.22	0	706	0.112	0	3.42*10 ³	153	18.5	0.426
Cut1	0	3.68*10 ³	5.22	0	519	0.112	0	2.79*10 ³	142	17.3	0.380
Cut2	0	2.96*10 ³	1.87	0	508	0.112	0	2.60*10 ³	127	12.2	0.360
Cut3	0	2.40*10 ³	1.87	þ	452	o	0	2.42*10 ³	108	10.1	0.304
Cut4	0	1.67*10 ³	1.87	0	226	0	0	1.55*10 ³	47.2	4.31	0.161
Cut5	0	1.60*10 ³	1.87	0	223	0	0	1.33*10 ³	41.2	4.07	0.135
Cut6	0	1.59*10 ³	0	0	204	0	0	1.30*10 ³	37.9	3.74	0.127
Cut7	0	1.06*10 ³	0	0	168	0	0	912	31.4	3.30	0.105

hadronic and semileptonic events are now negligible 4f_WW_leptonic: 1.06*10³ 4f_ZZWW_leptonic: 912

SM bkg (3)	vvWW	xxWW	xxxxZ	ууууΖ	ttbar	AA4f	AAee	AAII	AAqq	higgs
No cuts	2.49*10 ³	2.95*10 ³	309	1.59*10 ³	6.37*10 ⁵	3.36*10 ⁵	1.15*10 ⁹	2.25*10 ⁹	8.91*10 ⁸	1.30*10 ⁵
precuts	17.7	0.00373	0.00285	0.814	0	1.18*10 ³	4.36*10 ⁷	1.10*10 ⁹	4.16*10 ⁵	401
Cut1	16.2	0	0.00285	0.700	0	1.09*10 ³	5.53*10 ⁶	1.74*10 ⁸	1.18*10 ⁵	382
Cut2	15.9	0	0.00285	0.601	0	1.02*10 ³	2.98*10 ⁶	8.66*10 ⁷	6.95*10 ⁴	376
Cut3	15.6	þ	0.00285	0.542	þ	972	2.03*10 ⁶	5.92*10 ⁷	5.76*10 ⁴	366
Cut4	11.9	0	0	0.0585	0	585	1.92*10 ⁵	3.75*10 ⁶	1.08*10 ³	311
Cut5	11.1	0	0	~0	0	511	1.43*10 ³	2.16*10 ⁴	3.20	296
Cut6	10.5	0	0	~0	0	453	1.34*10 ³	1.47*10 ⁴	3.20	281
Cut7	8.55	0	0	0	0	368	1.25*10 ³	8.85*10 ³	3.20	244

hadronic and semileptonic events are now negligible AA_ee: $1.25*10^3$ AA_II: $8.85*10^3$