[arXiv:2111.03653]

Testability of CP-even ALP at ILC

Kodai Sakurai (Tohoku U.)

Collaborator:

Wen Yin (Tohoku U.)

mini-workshop on BSM at ILC, online, March. 2nd, 2022

Axion/Axion like particles (ALPs)

- Axion/ALPs are prominent candidates of light new particle.
- They emerge as pseudo Nambu Goldstone boson by spontaneous symmetry breaking of global U(1) symmetry.
- While axion was originally proposed to solve the strong CP problem, ALPs may rerate to BSM phenomena.
 - Dark matter Baryogenesis
 - Neutrino mass Inflation etc.

We can pursue new physics model by studying axion.

Axion/ALPs couplings

Usually, interactions of ALPs are assumed to be CP conserving.

$$\mathcal{L}_{\text{int.}} \ni -g_{af}a\bar{f}f - ig_{af}a\bar{f}\gamma_5 f$$

The couplings such as g_{ae} and g_{an} have been surveyed in various laboratory experiments and astrophysical environments.

E.g., Stellar energy losses, direct/indirect detection of DM, meson decays, etc.

How about CP violating case?

We consider the CP violation in the dark sector and construct a simple renormalizable model that only involves a dark Higgs singlet field.

The predicted ALP has CP-even scalar couplings.				
The ALP couplings are controlled by the mass of ALP.				
At ILC, the ALP can be probed thorough the SM-like Higgs boson decay into ALPs.				
Various signals: Higgs invisible decay, displaced vertex, Higgs exotic decay				
The ALP can be DM in keV-MeV range and probed by the Higgs invisible decay.				

Scalar potential : CP symmetric dark sector

U(1) symmetric part:

$$V = -m_{\Phi}^2 |\Phi|^2 + \lambda |\Phi|^4 + \lambda_P |H|^2 |\Phi|^2 + \lambda_H |H|^4 - \mu_H^2 |H|^2 ,$$

Soft breaking terms:

$$\delta V = \kappa \left(\sum_{j=1}^{4} c_j \Phi m_{\Phi}^{4-j} \Phi^j + \sum_{j=1}^{2} (\tilde{c}_j^H m_{\Phi}^{2-j} \Phi^j |H|^2 + \tilde{c}_j^\Phi m_{\Phi}^{2-j} \Phi^j |\Phi|^2) \right) + \text{h.c.}$$

SM Higgs doublet field: $H = \begin{pmatrix} G^+ \\ v + \frac{1}{\sqrt{2}}(\rho + iG_0) \end{pmatrix}$, Dark Higgs singlet field: $\Phi = v_S + \frac{1}{\sqrt{2}}(s + ia')$

- In the potential, global dark U(1) symmetry is imposed.
 - Spontaneously broken by $\langle \Phi \rangle$. $\rightarrow \rho$ and s mix
 - Massless nambu Goldstone boson a' is obtained.
- The potential has accidental discrete symmetries.

 C_{dark} symmetry: SM fields do not transform, $\Phi(t, \vec{x}) \to \Phi^*(t, \vec{x})$

CP symmetry: SM fields transform as in the SM, $\Phi(t, \vec{x}) \to \Phi^*(t, -\vec{x})$

Scalar potential : CP violating dark sector

U(1) symmetric part:

$$V = -m_{\Phi}^2 |\Phi|^2 + \lambda |\Phi|^4 + \lambda_P |H|^2 |\Phi|^2 + \lambda_H |H|^4 - \mu_H^2 |H|^2 ,$$

Soft breaking terms:

$$\delta V = \kappa \left(\sum_{j=1}^{4} c_j \Phi m_{\Phi}^{4-j} \Phi^j + \sum_{j=1}^{2} (\tilde{c}_j^H m_{\Phi}^{2-j} \Phi^j |H|^2 + \tilde{c}_j^\Phi m_{\Phi}^{2-j} \Phi^j |\Phi|^2) \right) + \text{h.c.}$$

SM Higgs doublet field: $H = \begin{pmatrix} G^+ \\ v + \frac{1}{\sqrt{2}}(\rho + iG_0) \end{pmatrix}$, Dark Higgs singlet field: $\Phi = v_S + \frac{1}{\sqrt{2}}(s + ia')$

- κ corresponds to the order parameter of breaking of dark U(1).
 - It scales the mass of ALP $m_a^2 \sim \mathcal{O}(\kappa) v_{\Phi}^2 \sim \mathcal{O}(\kappa) m_s^2$ ($v_{\Phi} \sim m_s \gtrsim v$)
- The accidental discrete symmetries are broken by δV .

 C_{dark} symmetry: SM fields do not transform, $\Phi(t, \vec{x}) \to \Phi^*(t, \vec{x})$ CP symmetry: SM fields transform as in the SM, $\Phi(t, \vec{x}) \to \Phi^*(t, -\vec{x})$

CP violating dark sector predicts a CP-even ALP!

- The ALP fields mix with the CP-even components ρ and s'.
 - $\begin{pmatrix} h \\ s \\ a \end{pmatrix} = R(\theta_{hs}, \theta_{sa}, \theta_{ah}) \begin{pmatrix} \rho \\ s' \\ a' \end{pmatrix}$

SM Higgs doublet : $H = \begin{pmatrix} G^+ \\ v + \frac{1}{\sqrt{2}}(\rho + iG_0) \end{pmatrix}$ Dark Higgs singlet: $\Phi = v_S + \frac{1}{\sqrt{2}}(s + ia')$

h: SM-like Higgs boson , s: dark Higgs boson , a: ALP

• The mixing angle between h and a can be expressed by

$$\theta_{ah} \simeq \frac{2 \mathcal{M}_{ah}^2}{\mathcal{M}_{hh}^2 - \mathcal{M}_{aa}^2} \sim c_h \frac{m_a^2}{m_h m_\Phi} \qquad \qquad c_h \text{ is function of } c_i \,.$$

• Though the mixing with the SM Higgs boson, couplings of ALP with SM fields are generated.

$$\mathcal{L}_{\text{int.}} \ni -\theta_{ah} \frac{m_f}{v} a \bar{f} f - i g_{af} a \bar{f} \gamma_5 f$$

- \rightarrow ALP has the couplings of CP-even scalar.
- \rightarrow The couplings scale with the mass of ALP.

 $C_{\text{dark}} \cdot CP$: the SM fields transform as in the SM, $\Phi[t, \vec{x}] \to \Phi[t, -\vec{x}]$

$$\delta V = \kappa \left(\sum_{j=1}^{4} c_j \Phi m_{\Phi}^{4-j} \Phi^j + \sum_{j=1}^{2} (\tilde{c}_j^H m_{\Phi}^{2-j} \Phi^j |H|^2 + \tilde{c}_j^\Phi m_{\Phi}^{2-j} \Phi^j |\Phi|^2) \right)$$

• In $\kappa \neq 0$ (i.e. $\delta V \neq 0$),

 C_{dark} : Broken, CP: Broken

 $C_{dark} \cdot CP$: Conserved

The potential has the $C_{dark} \cdot CP$ symmetry.

- Actually, g_{af} breaks $\mathit{C}_{dark}\cdot \mathit{CP}$.

$$\mathcal{L}_{\text{int.}} \ni -\theta_{ah} \frac{m_f}{v} a \bar{f} f - i g_{af} a \bar{f} \gamma_5 f$$

→ The simple model involving dark Higgs singlet predict CP-even ALP.

Search of CP-even ALP

The interaction between ALP and the SM-like Higgs boson is not necessary small, differently from the interaction with fermions.

$$(a\bar{f}f): -\theta_{ah}\frac{m_f}{v}a\bar{f}f$$
$$\sim c_h\frac{m_a^2}{m_hm_{\Phi}}$$

$$(h(\partial a)^2): -\frac{\lambda_P v}{m_s^2 - m_h^2}h(\partial a)^2$$

If $\lambda_P \sim \mathcal{O}(1)$, the coupling can be sizable.

 \rightarrow The SM-like Higgs boson decay into ALPs can be significant.

Numerical result for BR($h \rightarrow aa$)

[KS, W. Yin] 10⁰ Input parameters 10⁻¹ 10⁻² $500 \text{GeV} < m_s, v_s < 10 \text{TeV}$ $0 < c_i < 1, \quad 10^{-10} < \kappa < 10^{-2}$ 10⁻³ 10^{-1} 10⁻⁴ ee 10⁻⁵ 10⁻⁵ 10 10⁻⁶ 10 10^{-4} (-1)λ_P Branching ratio $BR(h \to aa) \simeq \frac{|\lambda_{haa}|^2}{8\pi m_h \Gamma_h}$ 10⁻² 10⁻⁷ $\lambda_{haa} \simeq \frac{\lambda_P}{2} v \cos \theta_{hs} + \frac{v_s}{\sqrt{2}} \lambda_H \sin \theta_{hs} + \mathcal{O}(\kappa)$ 10⁻⁸ 10^{-3 ∟} 10⁻⁴ 10⁻² 10⁻³ 10^{-1} θ_{hS} $V \ni +\lambda_P |H|^2 |\Phi|^2 + \lambda_H |H|^4$

→ If the mixing angle between h and s, θ_{hs} is 1% ~10%, BR(h—>aa) can exceed 1%

Collider signature at the ILC

- At the ILC with $\sqrt{s} = 250 \text{ GeV}$, the ALP can be produced via $e^+e^- \rightarrow Zh$, followed by $h \rightarrow aa$.
- Different collider signatures are possible depending a relation between L_D and L_V (also L_R).

Condition	Signals in Higgs factory			
$L_D \gg L_V > L_R$	Higgs invisible decay			
	Displaced vertex $\times 2$, Higgs invisible decay			
$L_D \sim L_V > L_R$	or/and Displaced vertex+missing energy			
$L_V > L_D > L_R$	Displaced vertex $\times 2$			
$L_V > L_R \gtrsim L_D$	Exotic Higgs decay			

- L_D : Decay length of ALP
- L_V : Detector size
- L_R : Resolution of vertex detector

a: ALPX: SM particle

Probe of CP-even ALP[1/5]

Probe of CP-even ALP[2/5]

Probe of CP-even ALP[3/5]

$$BR(h \to aa) \lesssim 2 \times 10^{-4} \left(\frac{10^6}{N_H}\right) (2\sigma)$$

Probe of CP-even ALP[4/5]

Probe of CP-even ALP[5/5]

CP-even ALP as DM

- → The ALP DM can be probed by the future 21 cm line measurements, Vera Rubin observatory (structure formation limit).
- \rightarrow Future X-ray and γ -ray observatories also has sensitivity in this parameter region.
- \rightarrow Higgs boson invisible decay can also probe ALP DM with $\,m_a \lesssim 1 {\rm MeV}$.

- We discussed a simple renormalizable model with CP violation in the dark sector.
- The model predict ALP being CP-even.
- The ALP can be probed by ILC though h -> aa.
 - Depending on the decay length, different signatures are possible: Higgs invisible decay, displaced vertex, Higgs exotic decay
- In case of $m_a \lesssim 1 \text{MeV}$, the ALP can be searched by future 21 cm line measurements, Vera Rubin observatory as well as future X-ray, γ -ray observatories.
 - Also, the Higgs invisible decay can probe ALP in this mass range.

Buck up

Coupling of ALP with Higgs boson

- Axion/ALPs are prominent candidates of light DM.
- They emerge as pseudo Nambu Goldstone boson by spontaneous symmetry breaking of global U(1) symmetry.
- The general mass range

Relations for scalar couplings in the limit $\kappa=0$

$$\begin{split} \lambda_P &= \frac{\sin(2\alpha_1)(m_s^2 - m_h^2)}{4vv_{\Phi}} ,\\ \lambda_s &= \frac{\cos(2\alpha_1)(m_s^2 - m_h^2) + m_h^2 + m_s^2}{8v_{\Phi}^2} ,\\ \lambda_h &= \frac{\cos(2\alpha_1)(m_h^2 - m_s^2) + m_h^2 + m_s^2}{8v^2} . \end{split}$$

$$V = -m_{\Phi}^{2} |\Phi|^{2} + \lambda |\Phi|^{4} + \lambda_{P} |H|^{2} |\Phi|^{2} + \lambda_{H} |H|^{4} - \mu_{H}^{2} |H|^{2} ,$$

$$\begin{pmatrix} h \\ s \\ a \end{pmatrix} = R_{\alpha_1} \begin{pmatrix} \phi_r \\ \rho \\ a' \end{pmatrix} \quad R_{\alpha_1} = \begin{pmatrix} \cos \alpha_1 & \sin \alpha_1 & 0 \\ -\sin \alpha_1 & \cos \alpha_1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Kodai Sakurai

Branching ratios for the ALP

Branching ratios

ILD detector [ILD, 1912.04601]

Amputated view of the detector

Detector sizes

-

BeamCal

LumiCal FTD/SIT

Technology	Detector	Start (mm)	Stop (mm)	Comment
pixel detectors	Vertex	$r_{in} = 16$	$r_{out} = 58$	3 double layers of silicon
				pixels
	Forward tracking	$z_{in} = 220$	$z_{out} = 371$	2 Pixel disks
	SIT	$r_{in} = 153$	$r_{out} = 303$	2 double layers of Si pixels
Silicon strip	Forward tracking	$z_{in} = 645$	$z_{out} = 2212$	5 layers of Si strips
	SET	$r_{in} = 1773$	$r_{out} = 1776$	1 double layer of Si strips
Gaseous tracking	TPC	$r_{in} = 329$	$r_{out} = 1770$	MPGD readout, 220 points
				along the track
Silicon tungsten calorimeter	ECAL option	$r_{in} = 1805$	$r_{out} = 2028$	30 layers of 5×5 mm ² pixels
	ECAL EC option	$z_{in} = 2411$	$z_{out} = 2635$	30 layers of $5 \times 5 \text{ mm}^2$ pixels
	Luminosity calorimeter	$r_{in} = 83$	$r_{out} = 194$	30 layers
		$z_{in} = 2412$	$z_{out} = 2541$	
Diamond tungsten or GaAs calorimeter	Beam calorimeter	$r_{in} = 18$	$r_{out} = 140$	30 layers
		$z_{in} = 3115$	$z_{out} = 3315$	
SiPM-on-Tile	ECAL alternative	$r_{in} = 1805$	$r_{out} = 2028$	30 layers, 5 mm strips,
				crossed
	ECAL EC alternative	$z_{in} = 2411$	$z_{out} = 2635$	30 layers, 5 mm strips,
				crossed
	HCAL option	$r_{in} = 2058$	$r_{out} = 3345$	48 layers, 3×3 cm ² pixels
	HCAL EC option	$z_{in} = 2650$	$z_{out} = 3937$	48 layers, $3 \times 3 \text{ cm}^2$ pixels
RPC	HCAL option	$r_{in} = 2058$	$r_{out} = 3234$	48 layers, $1 \times 1 \text{ cm}^2$ pixels
	HCAL EC option	$z_{in} = 2650$	$z_{out} = 3937$	48 layers, $1 \times 1 \text{ cm}^2$ pixels
SiPM on scintillator bar	Muon	$r_{in} = 4450$	$r_{out} = 7755$	14 layers
	Muon EC	$z_{in} = 4072$	$z_{out} = 6712$	up to 12 layers

TABLE I. Key parameters of the ILD detector. All numbers from [4]. "Star" and "Stop" refer to the minimum and maximum extent of subdetectors in radius and/or z-value .

Time schedule of the future X, gamma ray obsearvatries

