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Problems/Mpysteries in the Standard Model

e Origin of Neutrino Masses?

e Dark Matter?

e Origin of the Electroweak symmetry breaking?

e Cosmic Inflation before Big Bang?

e Origin of Matter-Antimatter asymmetry in the Universe?
e Strong CP problem

e More

Need to go beyond the SM for solving the problems!




BSM candidate: gauged U(1) extended SMs

Gauge group: SU(3). X SU(2), X U(1), xX{U(1)

The most popular scenario: the minimal B-L model

1. B-L (Baryon number minus Lepton number) is
uniqgue anomaly free global symmetry in the SM

2. Why not gauging the U(1) B-L?

We may follow the history:

Before -the SM gauging
SU(2) isospin
U(1) hypercharge —» SU(3),. x SU(2), x U(1),
SU(3)

The SM




Minimal Gauged B-L Extension of the SM

Mohapatra & Marshak;
Wetterich; others

The model is based on  SU(3),xSU(2), x U(1)y XU(1)5_ |

Particle Contents

1SUB)e SU2)r U)y |U()B-L
i=1,23 q.| 3 2  +1/6 | +1/3
T 1 +2/3| +1/3
=1 3 1 —1/3| +1/3
vl 2 —1/2| -1
New fermions: | Ny 1 1 0 —1
er| 1 1 —1 —1
H| 1 2 —1/2 0
New scalar: [CI) 1 1 0 +2




More general U(1) extended SM Appelquist, Dobrescu & Hopper,

PRD 68 (1998) 035012

SU(3)exSU(2),xU(1)y {U(1)x |

Particle Contents SU<3>O SU(Z)L U(l)y U<1)X

e qz 3 2 1/6 (1/6)rg |+1/3
2 ul 3 1 2/3 (2/3)ry | +1/3
d% 3 1 _1/3 (—1/3>$H ‘|‘1/3

L1 2 —1/2 [ (-1/2)zg | -1

Ny I 1 L =

e, | 1 1 -1 | (=Dzyg | -1

il 1 2 —1/2 | (=1/2)zg 0

d | 1 1 0 1

> U(1)x charge: [QX = Ydop|+ Qp-L ]
» B-L limit: rg — 0




New Yukawa terms in Lagrangian

S ] _
[ﬁmkawa > =Y YU HN), - > Y YIONECONE + h.c.J
k

i,

U(1)x symmetry breaking via [(c[)) — U—XJ

V2
# U(1)x gauge boson (Z’ boson) mass

My = ) x Ux ] Mass scale is controlled
[ g by U(1)x Sym. Br. scale

Heavy Majorana neutrino mass

Mas — Yy U(1)x sym breaking also
N X generates RHN mass

# Seesaw mechanism after EW sym. breaking




U(1) Higgs sector could be the origin of EWSB

U(1) Higgs model and Coleman-Weinberg mechanism

Toy model: Field Symbol | U(1)
Higgs Scalar o +2
Weyl Fermion 14 —1

* General picture. This can be a part of the B-L model

We impose Classical Conformal symmetry

C Vtree — /ICI)((I)T(I))2 J

* defining this theory as “"Massless Theory”

Yukawa coupling is allowed:

(Z,=YOPY¥ +h.c.)




Coleman-Weinberg mechanism Coleman & Weinberg,
PRD 7 (1973) 1888

VCW Vtree + Vl—loop
o1 o)
2 2

L8 K3 GJ
a5 = b_yh) |
where (D_\/E (¢ +ix), LIB(D_ — (96g* — Y?) )

> Radiative U(1) symmetry breaking at qb = Vo

> Parameter relations: ,1(1) — _,Bq)



Interesting properties:

> Origin of gauge symmetry breaking?
guantum corrections (QM system knows where to be)

> Predictability

Relation between Higgs mass and U(1) gauge boson mass

> Yukawa coupling must be sub-dominant,

1
Po = 1672

otherwise unstable vacuum

(96g* — Y*) > 0,



Application to the Standard Model

Induced EW symmetry breaking

Iso, NO & Orikasa,
PLB 676 (2009) 81;
PRD 80 (2009)11007

V= (H' H)2 —E\m,-x (H'H) (o <I>)J +6/CW(CI>T<I>9

Negative Higgs mass squared is induced by Phi VEV!

(= = Ay (@)

Classically conformal U(1) extended SM

The origin of EWSB is the radiative U(1) symmetry
breaking!
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Probing U(1) extended Standard Models at ILC



Properties & Phenomenology of U(1) extended SMs

New Particles:

e 7" boson
e Heavy Majorana neutrinos for the seesaw mechanism
e SM-singlet U(1) Higgs

Phenomenology:

e 7" boson production & decay
e 7" boson mediated processes
e Heavy neutrino production

e U(1) Higgs boson phone



|. Phenomenology involving Z' boson

C, /Cr

U(1)x Z’ boson

Z/

[QX =Yiag+ QB-L]

L/R coupling
1.0t ,
Cﬁ _ g1,
(90)? + (gR)?
0.5} 0 9%
\ N RN A
0.0
-1.0r
-4 -2 0 2 4
XH

Z

Z’W

Branching Ratios

“,
e,

[—mz gx xH]

-

Branching raitos
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For ILC studies, we need to consider the current LHC constraints

whenever Z’ couples to u & d quarks

Das, Bhupal & NO, PLB 799 (2019) 135052
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Very severe constraints from
the resonance search at LHC Run-2

pp—>Z —ete lutu”

Interpretation to the upper bound
on the U(1) gauge coupling as
a function of Mz’

ILC energy is expected to be

VSiLe < My,
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ILC studies for the processes involving Z’ boson

ot SM/New
Z’ boson mediated processes
e~ ) SM/New
8x 1
| x 4 > =
Lower bf)und on vy Trom ATLAS‘WIth 139/fb | M , VX
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CMZ, > 6TeV — vin < O(1 TeV)]
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101

The ILC is more powerful
for heavier Z’ boson!
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Sample ILC studies
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(2) efe” — Zh
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* For detailed analysis, see Das &NO, arXiv: 2008.04023
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(3) Heavy Majorana neutrino pair production at ILC

o(e*e”>NN)[fb]
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Das, NO, Okada & Raut
PLB 797 (2019) 134849

The production cross section can
be sizable, while satisfying the
LHC constrains

The ILC can be HMN factory!

Same-sign dilepton final states as
“'Smoking-gun” signature of Majorana
nature

HMN can be long-lived

ILC to explore the Seesaw Mechanism
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Il. Exploring EWSB origin at ILC

Conventional:

py A )\mix
V= 0 = i)+ O = ) = TR - )P - )

EW symmetry is broken w/o ;tmix

CW system:

V = ﬁ % + 5% (In {ﬂ _ 25) _ Amich?
v¢ 6 4

The radiative U(1) symmetry breaking and 4,,;, > 0
are crucial for the EW symmetry breaking
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Potential analysis

92V aha¢

Mass matrix: Mg, = (a¢ahv

2 2
“( )
h= Vh,Qs: M m¢

wass gt (1) = () ) ()

Express the potential in terms of mass eigenstates
We set § < 1, whichmeans h; ~ h, h, ~ ¢
my, = 125 GeV

mhl

My, <=

20



SM-like Higgs coupling analysis

We have found an interesting difference:

mj, mg
Conventional: 9ghihohy = — (1 + 2—2) 6?
2
m é

: m
CW system: Ghihohy = ——— ( — 42) 0
Up, h

For the triple scalar coupling, we naively expect
C ghlhzhz ~ )\mixvh )

This is right in the conventional Higgs potential case,

but in the CW system, it is found to be very suppressed!
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How to confirm the symmetry breaking structure?

1. Measuring Anomalous SM-like Higgs couplings

Higgs-like particle is NOT 100% the SM Higgs boson

C
2 cos(f) < 1
Cosm

Same for Conventional/CW system

2. Searching for Anomalous Higgs decay: h1 —> h2 h2

~

—

Conventional VS. CW system A

BR(h; = hyh,) > BR(h; — hyh,) -
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How to confirm the symmetry breaking structure?

Baules & NO, in preparation
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Summary

> Gauged U(1) extended SMs are interesting BSM candidate.

> Toward probing the U(1) extended SMs, ILC studies (simple
theoretical analysis) are presented.

> To show the ILC feasibility, detailed analysis (realistic
detector simulations) are necessary.
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