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Problems/Mysteries	in	the	Standard	Model

• Origin	of	Neutrino	Masses?	

• Dark	Matter?	

• Origin	of	the	Electroweak	symmetry	breaking?	

• Cosmic	Inflation	before	Big	Bang?	

• Origin	of	Matter-Antimatter	asymmetry	in	the	Universe?	

• Strong	CP	problem		

• More	

Need	to	go	beyond	the	SM	for	solving	the	problems!
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BSM	candidate:	gauged	U(1)	extended	SMs

SU(3)c × SU(2)L × U(1)Y × U(1)Gauge	group:

The	most	popular	scenario:	the	minimal	B-L	model

1. B-L	(Baryon	number	minus	Lepton	number)	is		
unique	anomaly	free	global	symmetry	in	the	SM	

2.	Why	not	gauging	the	U(1)	B-L?	

We	may	follow	the	history:

Before	the	SM	
			SU(2)	isospin	
			U(1)	hypercharge	
			SU(3)

The	SM

SU(3)c × SU(2)L × U(1)Y

gauging
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Minimal	Gauged	B-L	Extension	of	the	SM�

The	model	is	based	on		

Particle	Contents	�

New	fermions:	

New	scalar:	

Mohapatra	&	Marshak;		
Wetterich;	others	
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SU(3)c SU(2)L U(1)Y U(1)B−L

qiL 3 2 +1/6 +1/3
ui
R 3 1 +2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
N i 1 1 0 −1
eiR 1 1 −1 −1
H 1 2 −1/2 0
Φ 1 1 0 +2

TABLE I: Particle content. In addition to the SM particle
contents, the right-handed neutrino N i (i = 1, 2, 3 denotes
the generation index) and a complex scalar Φ are introduced.

SU(3)c × SU(2)L × U(1)Y × U(1)B−L and the particle
content is listed in Table 1 [33]. The SM singlet scalar (Φ)
breaks the U(1)B−L gauge symmetry down to Z2 (B−L)

by its vacuum expectation value (vev), and at the same
time generates the right-handed neutrino masses. The
Lagrangian terms relevant for the seesaw mechanism are
given by

L ⊃ −Y ij
D N iH†!jL −

1

2
Y i
NΦN icN i + h.c., (1)

where the first term yields the Dirac neutrino mass after
electroweak symmetry breaking, while the right-handed
neutrino Majorana mass term is generated by the second
term associated with the B − L gauge symmetry break-
ing. Without loss of generality, we use the basis which
diagonalizes the second term and makes Y i

N real and pos-
itive.
Consider the following tree level action in the Jordan

frame:

Stree
J =

∫

d4x
√
−g

[

−
(

m2
P

2
+ ξHH†H + ξΦ†Φ

)

R

+(DµH)†gµν(DνH)− λH

(

H†H −
v2

2

)2

+(DµΦ)
†gµν(DνΦ)− λ

(

Φ†Φ−
v2B−L

2

)2

−λ′(Φ†Φ)(H†H)
]

, (2)

where v and vB−L are the vevs of the Higgs fields H and
Φ respectively. To simplify the discussion, we assume
that λ′ is sufficiently small so it can be ignored, and also
ξH % ξ.
The relevant one-loop renormalization group improved

effective action can be written as [41]

SJ =

∫

d4x
√
−g

[

−
(

m2
P + ξG(t)2φ2

2

)

R

+
1

2
G(t)2(∂φ)2 −

1

4
λ(t)G(t)4φ4

]

, (3)

where t = ln(φ/µ) and G(t) = exp(−
∫ t
0 dt′γ(t′)/(1 +

γ(t′))), with

γ(t) =
1

(4π)2

(

1

2

∑

i

(Y i
N (t))2 − 12 g2B−L(t)

)

(4)

being the anomalous dimension of the inflaton field.
gB−L denotes the U(1)B−L gauge coupling and µ the
renormalization scale. In the presence of the nonmini-
mal gravitational coupling, the one loop renormalization
group equations (RGEs) of λ, gB−L, ξ and Y i

N are given
by [32, 33]

(4π)2
dλ

dt
= (2 + 18 s2)λ2 − 48λ g2B−L + 96g4B−L

+2λ
∑

i

(Y i
N )2 −

∑

i

(Y i
N )4, (5)

(4π)2
dgB−L

dt
=

(

32 + 4 s

3

)

g3B−L, (6)

(4π)2
dξ

dt
= (ξ + 1/6)

(

(1 + s2)λ− 2γ
)

, (7)

(4π)2
dY i

N

dt
= (Y i

N )3 − 6g2B−LY
i
N +

1

2
Y i
N

∑

j

(Y j
N )2,

(8)

where the s factor is defined as

s(φ) ≡

(

1 + ξφ2

m2

P

)

1 + (6ξ + 1) ξφ
2

m2

P

. (9)

In the Einstein frame with a canonical gravity sector,
the kinetic energy of φ can be made canonical with re-
spect to a new field σ = σ(φ) [7],

(

dσ

dφ

)2

=
G(t)2Ω(t) + 3m2

P (∂φΩ(t))
2/2

Ω(t)2
, (10)

where,

Ω(t) = 1 + ξG(t)2φ2/m2
P . (11)

The action in the Einstein frame is then given by

SE =

∫

d4x
√
−gE

[

−
1

2
m2

PRE +
1

2
(∂Eσ)

2 − VE(σ)

]

,

(12)
with

VE(φ) =
1
4λ(t)G(t)4 φ4

(

1 + ξ φ2

m2

P

)2 . (13)

In our numerical work, we employ above potential with
the RGEs given in Eqs. (5-8). However, for a qualitative
discussion it is reasonable to use the following leading-log
approximation of the above potential:

VE(φ) '

(

λ0

4 +
96 g2

B−L

16 π2 ln
[

φ
µ

])

φ4

(

1 + ξ φ2

m2

P

)2 , (14)

R	

i=1,2,3		
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More	general	U(1)	extended	SM	

Particle	Contents	�

Appelquist,	Dobrescu	&	Hopper,	
PRD	68	(1998)	035012				

i=1,2,3		

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH + 1/3
ui
R 3 1 2/3 (2/3)xH + 1/3

diR 3 1 −1/3 (−1/3)xH + 1/3
!iL 1 2 −1/2 (−1/2)xH − 1
N i

R 1 1 0 −1
eiR 1 1 −1 (−1)xH − 1
H 1 2 −1/2 (−1/2)xH

Φ 1 1 0 +2

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C×SU(2)L×U(1)Y×U(1)X

A(0)
y =

1√
2





0 0 H+

0 0 H0

H− H0∗ 0



 . (1)

The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr

[

FMNF
MN

]

−
(cL
2
Tr [WµνW

µν ] +
cY
4

Tr [BµνB
µν ]

)

(δ(y) + δ(y − πR)) (2)

c = ! = 1 (3)

E = mc2 E = !ω (4)

1

Ø U(1)x	charge:			
Ø  B-L	limit:	

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH + 1/3
ui
R 3 1 2/3 (2/3)xH + 1/3

diR 3 1 −1/3 (−1/3)xH + 1/3
!iL 1 2 −1/2 (−1/2)xH − 1
N i

R 1 1 0 −1
eiR 1 1 −1 (−1)xH − 1
H 1 2 −1/2 (−1/2)xH

Φ 1 1 0 +2

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C×SU(2)L×U(1)Y×U(1)X

QX = YfxH +QB−L

xH → 0

A(0)
y =

1√
2





0 0 H+

0 0 H0

H− H0∗ 0



 . (1)

The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr

[

FMNF
MN

]

−
(cL
2
Tr [WµνW

µν ] +
cY
4

Tr [BµνB
µν ]

)

(δ(y) + δ(y − πR)) (2)

c = ! = 1 (3)

E = mc2 E = !ω (4)

1

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH +1/3
ui
R 3 1 2/3 (2/3)xH +1/3

diR 3 1 −1/3 (−1/3)xH +1/3
!iL 1 2 −1/2 (−1/2)xH −1
N i

R 1 1 0 −1
eiR 1 1 −1 (−1)xH −1
H 1 2 −1/2 (−1/2)xH

Φ 1 1 0 +2

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C×SU(2)L×U(1)Y×U(1)X

QX = YfxH +QB−L

xH → 0

〈Φ〉 = vX√
2

(1)

mZ′ = 2 gX vX (2)

MN i =
Y k
N√
2
vX (3)

A(0)
y =

1√
2





0 0 H+

0 0 H0

H− H0∗ 0



 . (4)

The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr

[

FMNF
MN

]

−
(cL
2
Tr [WµνW

µν ] +
cY
4

Tr [BµνB
µν ]

)

(δ(y) + δ(y − πR)) (5)

1

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH +1/3
ui
R 3 1 2/3 (2/3)xH +1/3

diR 3 1 −1/3 (−1/3)xH +1/3
!iL 1 2 −1/2 (−1/2)xH −1
N i

R 1 1 0 −1
eiR 1 1 −1 (−1)xH −1
H 1 2 −1/2 (−1/2)xH

Φ 1 1 0 +2

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C×SU(2)L×U(1)Y×U(1)X

QX = Yf xH +QB−L

xH → 0

f

f̄

Z ′

Z

h

−mZ gX xH

〈Φ〉 = vX√
2

(1)

mZ′ = 2 gX vX (2)

MN i =
Y k
N√
2
vX (3)

A(0)
y =

1√
2





0 0 H+

0 0 H0

H− H0∗ 0



 . (4)

1

0	



6

U(1)x	symmetry	breaking	via	�

U(1)x	gauge	boson	(Z’	boson)	mass	
	
			
Heavy	Majorana	neutrino	mass�

Mass	scale	is	controlled	
by	U(1)x	Sym.	Br.	scale		
	
	
U(1)x	sym	breaking	also	
generates	RHN	mass	�

New	Yukawa	terms	in	Lagrangian	

1 Introduction

The dark matter relic abundance is measured at the 68% limit as [?]

ΩDMh2 = 0.1198± 0.0015. (1)

xΦ = 1 (2)

U(1)X = U(1)Y ⊕ U(1)B−L (3)

xH → 0 (4)

xH → ∞ (5)

Z ′ (6)

αX =
g2X
4π

(7)

mZ′ (8)

xH (9)

mDM (10)

mZ′ = 4 TeV (11)

xH = 0 (12)

αX = 0.027 (13)

αX = 10−4.5, 10−4, 10−3.5, 10−3, 10−2.5, 10−2, 10−1.75 (14)

LY ukawa ⊃ −
∑

i,j

Y ij
D #

i
LHN j

R − 1

2

∑

k

Y k
NΦN

k C
R Nk

R + h.c., (15)

U(1)Y

U(1)B−L

U(1)X In this section, we evaluate the relic abundance of the dark matter NR and identify

an allowed parameter region that satisfies the upper bound on the dark matter relic density of

ΩDMh2 ≤ 0.1213. The dark matter relic abundance is evaluated by integrating the Boltzmann

equation given by

dY

dx
= − s〈σv〉

xH(mDM)

(
Y 2 − Y 2

EQ

)
, (16)

where temperature of the universe is normalized by the mass of the right-handed neutrino

x = mDM/T , H(mDM) is the Hubble parameter at T = mDM , Y is the yield (the ratio of

1

Seesaw	mechanism	after	EW	sym.	breaking		

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH + 1/3
ui
R 3 1 2/3 (2/3)xH + 1/3

diR 3 1 −1/3 (−1/3)xH + 1/3
!iL 1 2 −1/2 (−1/2)xH − 1
N i

R 1 1 0 −1
eiR 1 1 −1 (−1)xH − 1
H 1 2 −1/2 (−1/2)xH

Φ 1 1 0 +2

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C×SU(2)L×U(1)Y×U(1)X

QX = YfxH +QB−L

xH → 0

〈Φ〉 = vX√
2

(1)

A(0)
y =

1√
2





0 0 H+

0 0 H0

H− H0∗ 0



 . (2)

The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr

[

FMNF
MN

]

−
(cL
2
Tr [WµνW

µν ] +
cY
4

Tr [BµνB
µν ]

)

(δ(y) + δ(y − πR)) (3)

c = ! = 1 (4)

1

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH + 1/3
ui
R 3 1 2/3 (2/3)xH + 1/3

diR 3 1 −1/3 (−1/3)xH + 1/3
!iL 1 2 −1/2 (−1/2)xH − 1
N i

R 1 1 0 −1
eiR 1 1 −1 (−1)xH − 1
H 1 2 −1/2 (−1/2)xH

Φ 1 1 0 +2

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C×SU(2)L×U(1)Y×U(1)X

QX = YfxH +QB−L

xH → 0

〈Φ〉 = vX√
2

(1)

mZ′ = 2 gX vX (2)

MN i =
Y k
N√
2
vX (3)

A(0)
y =

1√
2





0 0 H+

0 0 H0

H− H0∗ 0



 . (4)

The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr

[

FMNF
MN

]

−
(cL
2
Tr [WµνW

µν ] +
cY
4

Tr [BµνB
µν ]

)

(δ(y) + δ(y − πR)) (5)

1

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH + 1/3
ui
R 3 1 2/3 (2/3)xH + 1/3

diR 3 1 −1/3 (−1/3)xH + 1/3
!iL 1 2 −1/2 (−1/2)xH − 1
N i

R 1 1 0 −1
eiR 1 1 −1 (−1)xH − 1
H 1 2 −1/2 (−1/2)xH

Φ 1 1 0 +2

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C×SU(2)L×U(1)Y×U(1)X

QX = YfxH +QB−L

xH → 0

〈Φ〉 = vX√
2

(1)

mZ′ = 2 gX vX (2)

MN i =
Y k
N√
2
vX (3)

A(0)
y =

1√
2





0 0 H+

0 0 H0

H− H0∗ 0



 . (4)

The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr

[

FMNF
MN

]

−
(cL
2
Tr [WµνW

µν ] +
cY
4

Tr [BµνB
µν ]

)

(δ(y) + δ(y − πR)) (5)

1
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U(1)	Higgs	sector	could	be	the	origin	of	EWSB

U(1)	Higgs	model	and	Coleman-Weinberg	mechanism

Field Symbol U(1)
Higgs Scalar Φ +2
Weyl Fermion Ψ −1

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C SU(2)L U(1)Y U(1)B−L

qiL 3 2 1/6 +1/3
ui
R 3 1 2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
eiR 1 1 −1 −1

H 1 2 −1/2 0

Table 2: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

a new general-purpose experiment to be installed in a beam dump facility at the SPS

to search for

〈σv〉 ∝ g2ζg
2
BL (1)

〈σv〉 ∝ g4ζ (2)

g2ζg
2
BL & 1 (3)

Ωζh
2 = 0.12 (4)

γ e (5)

τDM > τU ' 1017 sec |Q| (= 1, 3 ZBL ζ ζ̄ !−, q !+, q̄ ; gζ = gBL = 0.2 MZBL = 3TeV Ωζh
2 = 0.12MZBL [GeV] (6)

1

Toy	model:

*	General	picture.	This	can	be	a	part	of	the	B-L	model

We	impose	Classical	Conformal	symmetry

Vtree = λΦ(Φ†Φ)2

ℒY = Y Φ ΨΨ + h . c .
Yukawa	coupling	is	allowed:

*	defining	this	theory	as	``Massless	Theory”



Coleman-Weinberg	mechanism
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VCW = Vtree + V1−loop

Φ =
1

2
(ϕ + iχ),

potential [13] is calculated to be

V (φ) =
λΦ

4
φ4 +

βΦ

8
φ4

(

ln

[

φ2

v2φ

]

−
25

6

)

, (14)

where φ/
√
2 = #[Φ] is a real scalar, and we have chosen the renormalization scale as the VEV

of Φ (〈φ〉 = vφ). The stationary condition dV/dφ|φ=vφ
= 0 leads to a relation,

λΦ =
11

6
βΦ, (15)

between the renormalized self-coupling defined as

λΦ =
1

3!

d4V (φ)

dφ4

∣

∣

∣

∣

φ=vφ

(16)

and the coefficient of the one-loop corrections 2,

βΦ =
1

16π2

(

20λ2
Φ + 96g4X − 3Y 4

M

)

&
1

16π2

(

96g4X − 3Y 4
M

)

. (17)

Here, we have used λ2
Φ ' g4X in the last expression. Note that the U(1)X symmetry breaking

via the Coleman-Weinberg mechanism relates the U(1)X Higgs quartic coupling to the gauge

and Majorana Yukawa couplings in Eq. (15). The vacuum stability requires YM < (32)1/4gX .

We next consider the SM Higgs sector. In our model, the electroweak symmetry breaking is

achieved in a very simple way. Once the U(1)X symmetry is radiatively broken, the SM Higgs

doublet mass is generated through the mixing quartic term in Eq. (13):

V ⊃
λH

4
h4 −

λmix

4
v2φh

2, (18)

where we have replaced H by H = 1/
√
2 (0 h)T in the unitary gauge. As a result, the elec-

troweak symmetry is broken. Here, we emphasize a crucial difference from the SM, namely, the

electroweak symmetry breaking is triggered by the radiative U(1)X gauge symmetry breaking

[14], not by a negative mass squared added by hand. The SM Higgs boson mass (mh) is given

by

m2
h = λmixv

2
φ = 2λHv

2
h, (19)

where vh = 246 GeV is the SM Higgs VEV. Considering the Higgs boson mass ofmh = 125 GeV

[15] and the LEP constraint on vφ ! 10 TeV [16–19], we find λmix " 10−4 and the smallness of

λmix is justified.

2 In a more precise formulation of the Coleman-Weinberg effective potential, βΦ includes a λmix term which

we have neglected because it is negligibly small compared to the dominant contribution from g4
X
. Also, we

define our inflaton trajectory along the φ direction with H = 0. Hence, even for λmix ) λΦ, we can neglect

the λmix term in our inflationary analysis.
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	where βΦ =
1

16π2 (96g4 − Y4)

➢ Radiative	U(1)	symmetry	breaking	at		

➢ Parameter	relations:	

ϕ = vϕ

λΦ =
11
6

βΦ

m2
ϕ = λΦv2

ϕ

Coleman	&	Weinberg,		
PRD	7	(1973)	1888



Interesting	properties:
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➢ Origin	of	gauge	symmetry	breaking?																																					
quantum	corrections	(QM	system	knows	where	to	be)	

➢ Predictability																																																																																						

Relation	between	Higgs	mass	and	U(1)	gauge	boson	mass	

➢ Yukawa	coupling	must	be	sub-dominant,																																																		

βΦ =
1

16π2 (96g4 − Y4) > 0,

	otherwise	unstable	vacuum
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Application	to	the	Standard	Model
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Induced	EW	symmetry	breaking

Coleman-Weinberg Mechanism

Radiative Symmetry breaking as origin of SM Higgs potential

Hidden U(1) sector scalar potential of the form

V� = ��

⇣
�†�

⌘2
+ V1�loop

=
1

4
���

4 +
��
8
�4

 
ln

"
�2

v2�

#
�

25

6

!
, where � =

p

2Re [�]

(2)

Radiative symmetry breaking occurs at h�i = v�

Combined Higgs and � potential is

V = �h

⇣
H

†
H

⌘2
� �mix

⇣
H

†
H

⌘⇣
�†�

⌘
+ V� (3)

With �mix > 0, h�i = v� generates SM Higgs VEV, driving EW
symmetry breaking.

Victor Baules (vabaules@crimson.ua.edu) (In Collaboration with Nobuchika Okada (U. of Alabama) Manuscript in preparation )Suppressed Higgs Coupling SUSY 2021 August 25, 2021 3 / 8

Classically	conformal	U(1)	extended	SM
Iso,	NO	&	Orikasa,	
PLB	676	(2009)	81;	
PRD	80	(2009)11007

+VCW(Φ†Φ)

Negative	Higgs	mass	squared	is	induced	by	Phi	VEV!

m2
H = − λmix |⟨Φ⟩ |2

The	origin	of	EWSB	is	the	radiative	U(1)	symmetry	
breaking!
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Probing	U(1)	extended	Standard	Models	at	ILC
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Properties	&	Phenomenology	of	U(1)	extended	SMs

• Z’	boson	
• Heavy	Majorana	neutrinos	for	the	seesaw	mechanism	
• SM-singlet	U(1)	Higgs	

New	Particles:

• Z’	boson	production	&	decay	
• Z’	boson	mediated	processes	
• Heavy	neutrino	production	
• U(1)	Higgs	boson	phone

Phenomenology:
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I.	Phenomenology	involving	Z’	boson
U(1)x	Z’	boson

Z’	boson	phenomenology	

Properties:	electrically	neutral	heavy	vector	boson	
																					Couplings	with	SM	particles			
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For	ILC	studies,	we	need	to	consider	the	current	LHC	constraints	
whenever	Z’	couples	to	u	&	d	quarks

1 2 3 4 5 6
0.001

0.005

0.010

0.050

0.100

0.500

1

MZ' [TeV ]

g X
M
ax

Das,	Bhupal	&	NO,	PLB	799	(2019)	135052

xH = 0
xH = − 1.2

xH = 1

Very	severe	constraints	from		
the	resonance	search	at	LHC	Run-2

pp → Z′ → e+e−/μ+μ−

Interpretation	to	the	upper	bound		
on	the	U(1)	gauge	coupling	as		
a	function	of	Mz’

ILC	energy	is	expected	to	be	

SILC ≪ MZ′ 

LHC	Run-2	with	139/fb
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ILC	studies	for	the	processes	involving	Z’	boson

SILC ≪ MZ′ 

Z’	boson	mediated	processes	
with	

e+

e−

∝ 4
g2

X

M2
Z′ 

=
1
v2

X

SM/New

SM/New

1 2 3 4 5 6
1

5

10

50

100

MZ' [TeV ]

v X
M
in
[T
eV

]

Lower bound on vX from ATLAS with 139/fb

xH = 0

MZ′ ≳ 6 TeV → vMin
X ≲ 𝒪(1 TeV)

The	ILC	is	more	powerful	
for	heavier	Z’	boson!

xH = 1

xH = − 1.2
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Sample	ILC	studiesFuture	Linear	Collider	study	with	Z’	mass=7	TeV	
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The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr

[

FMNF
MN

]

−
(cL
2
Tr [WµνW

µν ] +
cY
4

Tr [BµνB
µν ]

)

(δ(y) + δ(y − πR)) (12)

c = ! = 1 (13)

E = mc2 E = !ω (14)

2

Deviations																		can	be	as	large	as	10%	for	xH=0	at	1	TeV	ILC	
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(2)		

SU(3)C SU(2)L U(1)Y U(1)X
qiL 3 2 1/6 (1/6)xH +1/3
ui
R 3 1 2/3 (2/3)xH +1/3

diR 3 1 −1/3 (−1/3)xH +1/3
!iL 1 2 −1/2 (−1/2)xH −1
N i

R 1 1 0 −1
eiR 1 1 −1 (−1)xH −1
H 1 2 −1/2 (−1/2)xH

Φ 1 1 0 +2

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.
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The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1
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Tr [BµνB
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c = ! = 1 (14)

E = mc2 E = !ω (15)

2

Deviation	can	be	as	large	as	5%	for	xH=-1.2	at	1	TeV	ILC	

Note	that	Z’	contribution	is	vanishing	for	the	B-L	limit		

*	For	detailed	analysis,	see	Das	&NO,	arXiv:	2008.04023
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(3)	Heavy	Majorana	neutrino	pair	production	at	ILC(3)		Heavy	Majorana	Neutrino	production		
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The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr
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MN

]

−
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µν ] +
cY
4
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)

(δ(y) + δ(y − πR)) (16)

c = ! = 1 (17)

2

~0.5	fb	cross	section	at	1	TeV	ILC	

Signatures	of	heavy	Majorana	neutrino	

Ø  ``Smoking-gun’’	signature	of	the	Majorana	nature:	
same	sign	dilepton	final	states			

Figure 6: Representative Feynman diagrams for the Higgs portal Majorana neutrino pair
production and subsequent decay modes.

respectively.
Let us now consider the production cross section for the RHNs at the LHC from the � and

h productions and their decays. Using Eqs. (4.1), (4.2) and (4.10), the cross section formulas
are given by

�(pp ! � ! NN) = sin
2 ✓ ⇥ �h(m�)⇥ BR(� ! NN),

�(pp ! h ! NN) = cos
2 ✓ ⇥ �h(mh)⇥ BR(h ! NN), (4.11)

respectively, and they are controlled by four parameters, Y , ✓, m� and mN . Throughout
this section, we fix mN = 20 GeV, for simplicity. The representative diagrams of the RHN
productions including their decays are shown in Fig. 6. We will discuss the decay of RHNs
into the SM final states in details in Sec. 5. In the remainder of the analysis in this section,
we fix the lifetime of RHNs to yield the best reach of �XX in Fig. 1 for both the future
HL-LHC and MATHUSLA displaced vertex searches, namely, �min(HL� LHC) = 20.7 and
�min(MATH) = 0.3 fb, which corresponds to c⌧ = 3.1 and 58.4 m, respectively. Here, we
identify X with the RHN while S is either h or �.

We first consider the case where h and � masses are almost degenerate, mh ' m� = 126

GeV. In this case, the total cross section �XX is given by the sum of the productions from
� and h.10 The best search reach of the displaced vertex signatures at the HL-LHC or the
MATHUSLA are expressed as

�min = �(pp ! � ! NN) + �(pp ! h ! NN)

'
⇥
sin

2 ✓ ⇥ BR(� ! NN) + cos
2 ✓ ⇥ BR(h ! NN)

⇤
�h(mh), (4.12)

where we have used the approximation �h(m�) ' �h(mh). Hence, the best search reach is
expressed as a function of Y and ✓ for the fixed values of mN = 20 GeV, mh = 125 GeV and
m� = 126 GeV. In Fig. 7, our results are shown in (Y, sin ✓)-plane. This plots show (i) the
best reaches of displaced vertex searches at the HL-LHC (dashed curve) and the MATHUSLA

10 Although � and h are almost degenerate, we do not consider the interference between the processes,
pp ! � ! NN and pp ! h ! NN , since their decay width is much smaller (a few MeV) than their mass
differences. Hence, in evaluation the total cross section, we simply add the individual production cross section
in Eq. (4.11).
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The KK modes of Ay are eaten by KK modes of the SM gauge bosons and become their

longitudinal degrees of freedom like the ordinary Higgs mechanism.

The 5D Lagrangian relevant to our DM physics is given by

LDM = −1

2
Tr

[

FMNF
MN

]

−
(cL
2
Tr [WµνW

µν ] +
cY
4

Tr [BµνB
µν ]

)

(δ(y) + δ(y − πR)) (17)

c = ! = 1 (18)

2

Same	sign	dilepton+jets	

Ø  Displaced	vertex	signature	

N	can	be	long	lived	when	
lightest	neutrino	is	very	light		

Figure 20: In the left panel, the red and the green shaded region correspond to the constraint on
effective netrino mass (hm��i) for the NH and IH, respectively. The horizontal shaded regions
from the top to bottom, correspond to the current EXO-200 experiment and the future reach of
EXO-200 phase-II, and nEXO experiments, respectively [77]. In the right panel, the solid line
depicts the total decay length of RHN plotted against the mass of the corresponding lightest
light-neutrino mass. The dashed (solid) line correspond to fixed RHN mass of 20 (40) GeV. In
both the panels, vertical solid lines correspond to the three benchmark points for the lightest
neutrino masses for the NH and the IH, namely, mlightest = 0.1, 0.01, and 0.001 eV.

7 Conclusions
It is quite possible that new particles in new physics beyond the SM are completely singlet
under the SM gauge group. This is, at least, consistent with the null results on the search
for new physics at the LHC. If this is the case, we may expect that such particles very weakly
couple with the SM particles and thus have a long lifetime. Such particles, once produced at the
high energy colliders, provide us with the displaced vertex signature, which is very clean with
negligible SM background. In the context of the minimal gauged B�L extended SM, we have
considered the prospect of searching for the heavy neutrinos of the type-I seesaw mechanism
at the future high energy colliders. For the production process of the heavy neutrinos, we have
investigated the production of Higgs bosons and their subsequent decays into a pari of heavy
neutrinos. With the parameters reproducing the neutrino oscillation data, we have shown that
the heavy neutrinos are long-lived and their displaced vertex signatures can be observed at the
next generation displaced vertex search experiments, such as the HL-LHC, the MATHUSLA,
the LHeC, and the FCC-eh. We have found that the lifetime of the heavy neutrinos is controlled
by the lightest light neutrino mass, which leads to a correlation between the displaced vertex
search and the search limit of the future neutrinoless double beta-decay experiments.

Note added: While completing this manuscript, we noticed a paper by F. Deppisch, W.
Liu and M. Mitra [78] which also considers the displaced vertex signature of the heavy neutrinos.
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The	production	cross	section	can	
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The	ILC	can	be	HMN	factory!	
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II.	Exploring	EWSB	origin	at	ILC
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EW	symmetry	is	broken	w/o λmix
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The	radiative	U(1)	symmetry	breaking	and																																				
are	crucial	for	the	EW	symmetry	breaking	

λmix > 0
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Potential	analysis
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Mass	eigenstates:

Field Symbol U(1)
Higgs Scalar Φ +2
Weyl Fermion Ψ −1

Table 1: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

SU(3)C SU(2)L U(1)Y U(1)B−L

qiL 3 2 1/6 +1/3
ui
R 3 1 2/3 +1/3

diR 3 1 −1/3 +1/3
!iL 1 2 −1/2 −1
eiR 1 1 −1 −1

H 1 2 −1/2 0

Table 2: The particle content of the minimal U(1)X extended SM with Z2-parity. In
addition to the SM particle content (i = 1, 2, 3), the three RHNs (N j

R (j = 1, 2) and
NR) and the U(1)X Higgs field (Φ) are introduced. The unification into SU(5)×U(1)X is
achieved only for xH = −4/5, and xH is quantized in our model.

(
h
φ

)
=

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)(
h1

h2

)
(1)

a new general-purpose experiment to be installed in a beam dump facility at the SPS

to search for

〈σv〉 ∝ g2ζg
2
BL (2)

〈σv〉 ∝ g4ζ (3)

g2ζg
2
BL & 1 (4)

Ωζh
2 = 0.12 (5)

γ e (6)

1

Express	the	potential	in	terms	of	mass	eigenstates

We	set															,	which	means																		θ ≪ 1 h1 ≃ h, h2 ≃ ϕ
mh1

= 125 GeV

mh2
<

mh1

2



SM-like	Higgs	coupling	analysis

21

Conventional:

CW	system:

For	the	triple	scalar	coupling,	we	naively	expect			

This	is	right	in	the	conventional	Higgs	potential	case,		
but	in	the	CW	system,	it	is	found	to	be	very	suppressed!	

We	have	found	an	interesting	difference:
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Note that this triple coupling is extremely suppressed compared to the naively expected value

derived from the conventional Higgs potential without classical conformal symmetry. To see

this, we now look at the conventional Higgs potential.

Let us consider the conventional Higgs potential for h and � in the unitary gauge:
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The potential minimum appears at hhi = vh and h�i = v�. We rewrite the potential in terms

of physical states by shifting h ! h+ vh and � ! �+ v�:
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From the above scalar potential we obtain the mass-squared matrix for the conventional case

of the form:

Msq =

✓
m

2
h

�mixvhv�

�mixvhv� m
2
�

◆
. (12)

We diagonalize this matrix with Eq. (7) with the mixing angle defined by tan(2✓) = �2�mixvhv�

m
2
h�m

2
�
.

Note that the conventional Higgs potential of Eq. (11) is controlled by four free parameters. In

contrast to our conformal model, both ✓ and v� remain free after Mh1 and Mh2 are fixed.

Expressing the potential in terms of the mass eigenstates h1,2, we extract the triple coupling
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In the limit of m2
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2
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, the coupling from the conventional potential has di↵erent behavior
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Comparing Eqs. (14) and (15) with Eq. (9), we see a remarkable di↵erence. For ✓ ⌧ vh
v�
, the

coupling from the Coleman-Weinberg potential is proportional to ✓
2, while the conventional

coupling is proportional to ✓, as we would naively expect: gh1h2h2 ⇠ �mixvh. This is because in

the very small ✓ expansion for the triple coupling, the lowest order in ✓ is cancelled out in the

Coleman-Weinberg potential. On the other hand, for vh
v�

. ✓, the couplings from both potentials

have the same ✓ dependence, but the Coleman-Weinberg still exhibits relative suppression, now

due to the ratio
m

2
�

m
2
h
⌧ 1.

Note that in both cases, the Higgs anomalous coupling is controlled by cos(✓). This result

has interesting implications for Higgs phenomenology, namely, even if the anomalous SM Higgs

coupling is detectable in size, the SM Higgs boson decay to �� can be much harder to detect in

our model. This suppression is a characteristic feature of our extended conformally symmetric

model, in which EW symmetry breaking is triggered by the radiative U(1)H symmetry breaking.

III. NUMERICAL ANALYSIS OF THE COUPLING gh1h2h2

For an example numerical value, we use the known SM Higgs vev and fix the Higgs mass

eigenvalues Mh1 , Mh2 as follows, alongside a mixing angle |✓| = 0.1,

Mh1 = 125GeV, Mh2 = 25GeV. (16)

For the classically conformal model, v� is totally fixed by the above choices of model parameters

to be v� = 2555 GeV. We find the triple coupling to be

gh1h2h2 = �0.021, (17)

while for the conventional Higgs potential, v� is a free parameter chosen to be v� = 104 GeV,

and the coupling becomes

gh1h2h2 = 0.847. (18)

As explained in the previous section (see Eqs. (9), (14), and (15)), for |✓| = 0.1 � vh
v�
, the

triple coupling for the Coleman-Weinberg case is suppressed by a factor of
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2
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' 0.04. We use

v� = 104 GeV as a benchmark value for all calculations for the conventional Higgs potential.

Current experimental bounds for mass eigenstate mixing of the SM Higgs and scalar � point

to sin2(✓)  0.12, or |✓| ' 0.3 at 95% CL [3].

In the left panel of figure 1, we plot |gh1h2h2 | for the two cases as a function of |✓|, setting
Mh1 = 125 GeV and Mh2 = 25 GeV. For |✓| & vh

v�
' 0.025, we can see that gh1h2h2 in the

Coleman-Weinberg case is suppressed by a factor
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' 0.04. As discussed in the

previous section (see Eqs. (14) & (15)), we can see the transition in the sin(✓) dependence from

5

Assuming m
2
�
<

1
4m

2
h
and vh ⌧ v�, then ✓ ' m

2
h

m
2
h�m

2
�

⇣
vh
v�

⌘
, and Eq. (8) reduces to

gh1h2h2 ' �
m

2
�

vh

✓
1� 4

m
2
�

m
2
h

◆
✓
2
. (9)

Note that this triple coupling is extremely suppressed compared to the naively expected value

derived from the conventional Higgs potential without classical conformal symmetry. To see

this, we now look at the conventional Higgs potential.

Let us consider the conventional Higgs potential for h and � in the unitary gauge:

V =
1

4
�h

�
h
2 � v

2
h

�2
+

1

4
��

�
�
2 � v

2
�

�2
+

1

4
�mix

�
h
2 � v

2
h

��
�
2 � v

2
�

�
. (10)

The potential minimum appears at hhi = vh and h�i = v�. We rewrite the potential in terms

of physical states by shifting h ! h+ vh and � ! �+ v�:

V =
1

4

✓
m

2
h

2v2
h

◆�
h
2 + 2hvh

�2
+

1

4

✓
m

2
�

2v2
�

◆�
�
2 + 2�v�

�2
+

1

4
�mix

�
h
2 + 2hvh

��
�
2 + 2�v�

�
. (11)

From the above scalar potential we obtain the mass-squared matrix for the conventional case

of the form:

Msq =

✓
m

2
h

�mixvhv�

�mixvhv� m
2
�

◆
. (12)

We diagonalize this matrix with Eq. (7) with the mixing angle defined by tan(2✓) = �2�mixvhv�

m
2
h�m

2
�
.

Note that the conventional Higgs potential of Eq. (11) is controlled by four free parameters. In

contrast to our conformal model, both ✓ and v� remain free after Mh1 and Mh2 are fixed.

Expressing the potential in terms of the mass eigenstates h1,2, we extract the triple coupling

gh1h2h2 :

gh1h2h2 =
1

2vhv�

�
6v�m

2
h
cos(✓) sin2(✓)� 6vhm

2
�
cos2(✓) sin(✓)

+�mixvhv�

�
2vh cos(✓)

�
3 sin2(✓)� 1

�
+ 2v� sin(✓)

�
3 sin2(✓)� 2

���
. (13)

In the limit of m2
�
⌧ m

2
h
, the coupling from the conventional potential has di↵erent behavior

for ✓ ⌧ vh
v�

⌧ 1 and vh
v�

. ✓ ⌧ 1. For ✓ ⌧ vh
v�
, the triple coupling gh1h2h2 reduces to

gh1h2h2 ' �m
2
h

v�

✓
1 + 2

m
2
�

m
2
h

◆
✓, (14)

while for vh
v�

. ✓, the coupling is roughly

gh1h2h2 '
m

2
h

vh

✓
1 + 2

m
2
�

m
2
h

◆
✓
2
. (15)

4



How	to	confirm	the	symmetry	breaking	structure?	

22

1. Measuring	Anomalous	SM-like	Higgs	couplings	

Higgs-like	particle	is	NOT	100%	the	SM	Higgs	boson

CNP

CSM
= cos(θ) < 1

Same	for	Conventional/CW	system

2.	Searching	for		Anomalous	Higgs	decay: h1 → h2 h2

BR(h1 → h2h2) ≫ BR(h1 → h2h2)
Conventional									VS.													CW	system
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Conventional

CW	syst
em

Best	case	scenario	

✓Anomalous	Higgs	couplings	

✓Observation	of		h1 → h2h2

Yes	or	No	
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Baules	&	NO,	in	preparation

FIG. 2. Comparison of conventional (dashed lines) and Coleman-Weinberg (solid lines) h1 ! h2h2
branching ratio at Mh2 = 10 (red), 25 (black), and 50 GeV (Blue). An approximate suppression factor
of 10�3 is seen. Shaded regions correspond to bounds from the proposed ILC, blue for bounds on the
branching ratio [4, 5], and purple for bounds on sin(✓) [6, 7]. The gray shaded regions are excluded
by CMS and LEP-II for Mh2 = 25GeV [3, 8].

U(1)H-like Higgs bosons (h2) as a function of sin2(✓), where the solid line corresponds to our

model and the dashed line to the conventional Higgs potential. As expected from the di↵erence

in the couplings, the branching ratio in our model is also extremely suppressed. The red shaded

region, as before, is excluded by LEP-II. We use current bounds on invisible Higgs branching

ratios from CMS [8] as a constraint on Br(h1 ! h2h2) . 0.07 (ATLAS provides a similar bound

[10]). This is represented by the purple shaded region in figure 2. The prospective search reach

for the proposed International Linear Collider (ILC) is overlaid in the blue shaded region.

The ILC is expected to be capable of constraining model-independent invisible Higgs decay

branching ratios to within 1% [4, 5]. The vertical blue line denotes our choice of benchmark,

which is expected to be within the ILC search reach for the anomalous Higgs coupling.

The combination of anomalous Higgs decay and anomalous Higgs coupling results will pro-

vide a way to distinguish our conformal scenario from the conventional Higgs potential. Con-

sidering our benchmark case, for the conventional Higgs case, the anomalous branching ratio

and anomalous coupling can both be within the ILC search region, so they can be measured

simultaneously. On the other hand, for our conformal model the branching ratio is highly sup-

7
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Summary

‣ Gauged	U(1)	extended	SMs	are	interesting	BSM	candidate.	

‣ Toward	probing	the	U(1)	extended	SMs,	ILC	studies	(simple	
theoretical	analysis)	are	presented.		

‣ To	 show	 the	 ILC	 feasibility,	 detailed	 analysis	 (realistic	
detector	simulations)	are	necessary.


