Introduction	ILC studies	Possible models	Appendix	CEPC studies

Low mass scalars at e^+e^- colliders

Tania Robens

Rudjer Boskovic Institute/ CERN

mini-workshop on BSM at ILC 2. March '22

Tania Robens

 $m~\leq~125~{
m GeV}$ @ e^+e^-

mini-workshop, BSM @ ILC, 2.3.'22

Introduction	ILC studies	Possible models	Appendix	CEPC studies
Models				

- \bullet new low-mass scalars \Rightarrow models with scalar extensions
- many possibilites: introduce new $SU(2) \times U(1)$ singlets, doublets, triplets, ...
- unitarity \Rightarrow important sum rule

$$\sum_{i}g_{i}^{2}(h_{i})=g_{SM}^{2}$$

for coupling g to vector bosons

• many scenarios \Rightarrow signal strength poses strong constraints

医下颌 医下

Introduction	ILC studies	Possible models	Appendix	CEPC studies
Modele				

typical content: singlet extensions ⇒ additional CP-even/ odd mass eigenstates 2HDMs, 3HDMs: add additional charged scalars

- e.g. 2 real scalars \Rightarrow **3 CP-even neutral scalars**
- $\bullet~2\text{HDM}\rightarrow2$ CP-even, one CP odd neutral scalar, and charged scalars

• ...

IUUEIS

Tania Robens

 $m \leq 125 \, {
m GeV}$ @ e^+e^-

mini-workshop, BSM @ ILC, 2.3.'22

イロト イポト イラト イラト

Possible production modes and rates

$e^+ e^- \rightarrow Z^* \rightarrow Zh, e^+ e^- \rightarrow \nu \bar{\nu} h$ (VBF)

[cross sections for $e^+ e^-$ at $\sqrt{s} = 250 \,\mathrm{GeV}$ using Madgraph5]

- rule of thumb: rescaling ≤ 0.1
- \bullet \Rightarrow maximal production cross sections around 50 fb
- $\sim 10^5$ events using full luminosity

Tania Robens

 $m < 125 \, \text{GeV} @ e^+e^-$

mini-workshop, BSM @ ILC, 2.3.'22

3

Introduction	ILC studies	Possible models	Appendix	CEPC studies
Possible s	searches			

- one option: consider $h_{125} \rightarrow s s$
- also possible: direct searches
- for all of these: dominant decays typically to $b \bar{b}$ or $\tau^+ \tau^-$

 \Rightarrow mainly discussed here \Leftarrow

• $h_{125} \rightarrow s s$ also constrained from $\Gamma_{125} \leq 9 \,\mathrm{MeV}$, and $\mathsf{BR}_{h \rightarrow \mathsf{inv}} \leq 0.11$.

Projections for additional scalar searches

[P. Drechsel, G. Moortgat-Pick, G. Weiglein, Eur.Phys.J.C 80 (2020) 10, 922]

estimate of ILC sensitivity based on validation using LEP results ILC: $\sqrt{s} = 250 \,\text{GeV}, \int \mathcal{L} = 2 \,\text{ab}^{-1}$; S95: rescaling limit

Tania Robens

A (1) > 4

Projections for additional scalar searches

[Y. Wang, M. Berggren, J. List, arXiv:2005.06265]

additional scalar, $\sin \theta$ rescaling wrt SM prediction, comparison of different detector models recoil method

Tania Robens

 $m \leq 125 \, {
m GeV} \, 0 \, e^+ e^-$

mini-workshop, BSM @ ILC, 2.3.'22

イロト イポト イヨト イヨト

The 96 GeV LEP resonance

[S. Heinemeyer, C. Li, F. Lika, G. Moortgat-Pick, S. Paasch, arXiv:2112.11958]

[see also T. Biekoetter, M. Chakraborti, S. Heinemeyer, Eur.Phys.J.C 80 (2020) 1, 2]

various BSM models, rates using $\int \mathcal{L} = 2 \, \mathrm{ab}^{-1}$

N2HDM/ 2HDMS: 2HDM extended by real (complex) singlet, various symmetries imposed, fit to LEP/ CMS data [within/ outside 1 σ] = $-2 \circ \alpha \sigma$

Tania Robens

 $m \leq 125 \, {
m GeV} \, 0 \, e^+ e^-$

KIAS 🔤

Type X 2HDM, 4 τ final state via $\tau \tau A$ production

[E. J. Chun, T. Mondal, Phys.Lett.B 802 (2020) 135190] one doublet couples to quarks, other to fermions; CP violation

Searches for light A in 2HDMX at ILC250

- The channel Z → h_{SM}A is not possible since the relevant coupling is proportional to cos(β − α).
- At ILC250, Z → HA may not be feasible when H is heavier than 200 GeV.
- Possible option : $Z \rightarrow \tau \tau \rightarrow \tau \tau A \rightarrow 4\tau$. So called Yukawa production.

- This is the equivalent to *ttH* searches at LHC. Independent probe of Yukawa structure.
- At the ILC all the 4τ s can be reconstructed using collinear approximation.
- This enables to measure mass of the light particle.

 Towney Mondal, KIAS, Send
 ICHEP 2020, Progen
 Light (Provol)Scalar @ B.C

 Tania Robens
 $m < 125 \, {\rm GeV}$ @ e^+e^- mini-workshop, BSM @ ILC, 2.3.'22

Tania Robens

Type X 2HDM, 4 τ final state via $\tau \tau A$ production

[E. J. Chun, T. Mondal, Phys.Lett.B 802 (2020) 135190]

Current constraints for the $h_{125} \rightarrow s \, s$ searches at LHC

[M. Cepeda, S. Gori, V. Martinez Outschoorn, J. Shelton, arXiv:2111.12751]

bound on decays into lighter scalars from current searches

Tania Robens

 $m \leq 125 \, {
m GeV} \, @ e^+e^-$

Introduction	ILC studies	Possible models	Appendix	CEPC studies
Aligned 2H	DM			

[O. Eberhardt, A. Penuelas Martinez, A. Pich, JHEP 05 (2021) 005]

low mass region allowed; however, *HZZ* typically suppressed by $\cos(\beta - \alpha) \lesssim 0.25$]

Tania Robens

 $m \leq 125 \, {
m GeV}$ @ e^+e^-

ILC studies

Possible models

Singlet extensions [TR, preliminary]

TRSM: 2 real singlets [TR, T. Stefaniak, J. Wittbrodt, Eur.Phys.J.C 80 (2020) 2, 151]

 low-low: both additional scalars below 125 GeV; high-low: one new scalar above 125 GeV

using ScannerS [M. Muehlleitner, M. O. P. Sampaio, R. Santos, J. Wittbrodt, arXiv:2007.02985]

Tania Robens

 $m < 125 \, \text{GeV} @ e^+e^-$

50

Tania Robens

30 50

100

1000

3000

- E - N

500

m. [GeV]

[X.-F. Han, T. Li, H.-X. Wang, L. Wang, Y. Zhang, Phys.Rev.D 104 (2021) 11, 115001]

Inert Doublet Model, with \mathbb{Z}_2 breaking terms coupling to

various constraints (including agreement with $g_{\mu} - 2$); squares: allowed, bullets: forbidden

Tania Robens

leptons

 $m \leq 125 \, {
m GeV} \, {
m @} \, e^+e^-$

[P.M. Ferreira, B.L. Gonçalves, F.R. Joaquim, arXiv:2109.13179]

5 neutral, 3 singly charged, 2 doubly charged scalars

Tania Robens

 $m \leq 125 \, {
m GeV} \, 0 \, e^+ e^-$

Introduction	ILC studies	Possible models	Appendix	CEPC studies
Conclusior	าร			

- many new physics models predict one/ several scalars below 125 GeV
- typical decays into $b \bar{b}, \tau^+ \tau^-$
- cross sections could reach up to 50 fb from Zh production
- decays of $h_{125} \rightarrow s s$ also within reach
- important connection to EWSB/ EW phase transitions

Still space for more studies !

Tania Robens

 $m~\leq~125~{
m GeV}$ @ e^+e^-

mini-workshop, BSM @ ILC, 2.3.'22

3

イロト イポト イラト イラト

Introduction	ILC studies	Possible models	Appendix	CEPC studies

Appendix

Tania Robens

 $m~\leq~125~{
m GeV}$ @ e^+e^-

mini-workshop, BSM @ ILC, 2.3.'22

◆□ > ◆□ > ◆目 > ◆目 > ● 目 ● のへで

Introduction

ILC studies

Possible models

Appendix

CEPC studies

Decays of light SM-like scalars

Singlet extension, with connection to strong first-order electroweak phase transition

[J. Kozaczuk, M. Ramsey-Musolf, J. Shelton, Phys.Rev.D 101 (2020) 11, 115035]

blue band = strong first-order electroweak phase transition

comment: current constraints lead to prediction $\leq 10^{-1}$

[invisible BR, signal strength, assumes SM-like decay to bs] [projections taken from Z. Liu, L.-T. Wang, and H. Zhang, Chin. Phys. C 41, 063102 (2017)] Tania Robens $m \leq 125 \text{ GeV} @ e^+e^$ mini-workshop, BSM @ ILC, 2.3.'22

Singlet extension, spontaneous Z_2 breaking, with connection to strong first-order electroweak phase transition

Possible models

$h \rightarrow 4j/4b/4c$ final states

[Z. Liu, L.-T. Wang, H. Zhang, Chin.Phys.C 41 (2017) 6, 063102]

95% CL bounds, $\sqrt{s} = 240 \,\mathrm{GeV}, \, \int \mathcal{L} = 5 \,\mathrm{ab}^{-1}$

Tania Robens

 $m \leq 125 \, {
m GeV} \, 0 \, e^+ e^-$

mini-workshop, BSM @ ILC, 2.3.'22

・ロト ・同ト ・ヨト ・ヨト

Exotic decays - $h \rightarrow s s \rightarrow 4\tau$

[J. Shelton, D. Xu, arXiv:2110.13225]

comment: current constraints lead to prediction $\lesssim \, 10^{-3}$

[invisible BR, signal strength, assumes SM-like decay to $\tau {\rm s}]$

Tania Robens

 $m \leq 125 \, {
m GeV} \, 0 \, e^+ e^-$

mini-workshop, BSM @ ILC, 2.3.'22

・ロト ・同ト ・ヨト ・ヨト

scNMSSM, $h \rightarrow s s \rightarrow$ various final states [sc=semi-constrained, aka NUHM]

[S. Ma, K. Wang, J. Zhu, Chin.Phys.C 45 (2021) 2, 023113]

[projections taken from Z. Liu, L.-T. Wang, and H. Zhang, Chin. Phys. C 41, 063102 (2017)] Tania Robens $m \leq 125 \,\mathrm{GeV}$ @ e^+e^- mini-workshop, BSM @ ILC, 2.3.'22

Light charged scalars, 3HDM, $H^+ ightarrow c ar{b}$ final state

[A.G.Akeroyd, S. Moretti, M. Song, Phys.Rev.D 101 (2020) 3, 035021]

 ${\sf BR}(H^+
ightarrow c \, ar b = 0.05)$, e_c : charm tagging efficiency

 $e^+ e^-
ightarrow H^+ H^-$, $\sqrt{s} = 240 \, {
m GeV}$

Tania Robens

 $m \leq 125 \, {
m GeV} @ e^+e^-$

mini-workshop, BSM @ ILC, 2.3.'22

・ロト ・同ト ・ヨト ・ヨト

Current constraints on alignment in 2HDMs

[H. Arnold, talk at Higgs 2021]

Tania Robens

 $m < 125 \, \text{GeV} @ e^+e^-$

[F. Kling, S. Su, W. Su, JHEP 06 (2020) 163]

Tania Robens

 $m~\leq~125~{
m GeV}$ @ e^+e^-

Another recent 2HDM study

[O. Atkinson, M. Black, C. Englert, A. Lenz, A. Rusov, J. Wynne, arXiv:2202.08807]

2HDM Type I, direct searches, signal strength, and flavour constraints

Tania Robens

 $m \leq 125 \, {
m GeV} \ {
m @} \ e^+e^-$

Possible models

scNMSSM parameter space

[K. Wang, J. Zhu, JHEP 06 (2020) 078]

Tania Robens

 $m~\leq~125~{
m GeV}$ @ e^+e^-

Parameter space for light scalar

- [S. Heinemeyer, talk at ILCX 2021 workshop]
 - 4. Direct detection of "light" BSM Higgs bosons

Tania Robens

 $m~\leq~125\,{
m GeV}$ @ e^+e^-

 □
 <</td>
 ≥
 28
 ≥

 ○

 mini-workshop, BSM @ ILC, 2.3.'22

 <

N2HDM (2HDM + singlet) type II, $h_1 \rightarrow b \bar{b}$

[S. Heinemeyer, talk at ILCX 2021 workshop]

ILC production of the light scalar in the N2HDM type II:

[T. Biekötter, S.H., G. Weiglein – PRELIMINARY]

 \Rightarrow new state easily in the reach of the ILC \Rightarrow coupling measurements

Sven Heinemeyer, ILCX workshop, 28.10.2021

Tania Robens

 $m~\leq~125~{
m GeV}$ @ e^+e^-

Type X 2HDM with vector-like leptons

[E. J. Chun, T. Mondal, JHEP 11 (2020) 077]

... including connection to $g_{\mu} - 2$

Tania Robens

 $m < 125 \, {
m GeV} @ e^+e^-$

mini-workshop, BSM @ ILC, 2.3.'22

・ロト ・同ト ・ヨト ・ヨト

Scalar triplet model

[P.M. Ferreira, B.L. Gonçalves, F.R. Joaquim, arXiv:2109.13179]

Mass spectru	ım	CP-Conserving	CP-Violating	
	h ₁ ⁰	Massless - Goldstone boson		
Neutral	h ₂ ⁰	SM Higgs-like	Light	
	h ₃ ⁰ h ₄ ⁰	Decoupled	SM Higgs-like	
	h ₅ h ₆ 0	Decoupled	Decoupled	
	H_1^+	Massless - Goldstone boson		
Singly-charged	H_2^+	Decoupled	Electroweak	
	H_3^+	Decoupled	Decoupled	
Doubly charged	H_{1}^{++}	Decoupled	Electroweak	
Doubly-charged	H_{2}^{++}	Decoupled	Decoupled	

 $m \ < \ 125 \, {
m GeV} \ @ \ e^+ e^-$

(ロ) (四) (三) (三) (三)