Sensitivity to Long-Lived Dark Photons at the ILC

Laura Jeanty, Chris Potter, **Laura Nosler** with help from David Curtin 3/2/2021

Introduction

- Our project seeks to study the production of long-lived dark photons at the ILC, to provide a benchmark for long-lived studies at the ILC
- Because of the clean environment found in linear colliders, and the high rate of Higgs production, we would expect the ILC to be a good environment for studying low mass long-lived weakly coupled particles
- Link to our LOI

Dark Photons (Z_D)

- Mediators of a broken dark U(1) gauge theory that mixes kinematically with the standard model hypercharge, with mixing ε
- Dark sector could have a dark Higgs, which can mix with the SM Higgs with mixing κ
- We're studying production via exotic Higgs decay: H→ Z_DZ_D
 - Z_D can decay either hadronically or leptonically
- If $\varepsilon < \sim 10^{-5}$, the dark photons will be long-lived

Above: Dark photon production mechanism

Curtin, Essig, Gori, & Shelton, arXiv:1412.0018

Dark Photons at the ILC

- The proposed ILC should generate a large number of Higgs, so dark photon production via the Higgs could be observable
- Relative to hadron colliders, the clean environment of a linear collider should be favorable for reconstructing low mass displaced vertices
- Targeting a dataset with a luminosity of 2 ab⁻¹ at $\sqrt{s} = 250$ GeV
- This energy is tuned for studying the Higgstrahlung process $(e^+e^- \rightarrow ZH)$

Potter, arXiv:2002.02399

Benefits of ILC - Hadronic Decays

- The background to a low mass hadronic decay is greatly reduced in ILC compared to hadron colliders because of the clean environment
- Opens sensitivity to a type of decay that we might not be able to study as well at a hadron collider
- Because of this, studying $Z_D \rightarrow q\bar{q}$ in addition to $Z_D \rightarrow 2l$ at low mass

Average number of final state charged particles from each dark photon as a function of dark photon mass

Dark Photon Studies At Other Experiments

HL-LHC sensitivity to this model

- Prompt decays of dark photons from exotic Higgs production in HL-LHC

Sensitivity at CEPC and FCC-ee

- Hadronic decays of LLPs from exotic Higgs decays in future e⁺e⁻ colliders

Sensitivity via H-> inv

- Studying Higgs decays at future colliders

<u>Sensitivity of dark Higgs via direct decay</u> European Strategy Report 2020

Sensitivity to dark photon production for different dark photon masses, branching ratios of $H \rightarrow Z_D Z_D$, and epsilons

5

Goals of our study

- Determine ILC sensitivity to long-lived dark photon production for our particular signal $(H \rightarrow Z_D Z_D)$, Z_D mass in 1 to 10s of GeV
 - Calculate sensitivity as a function of the Z_D mass, lifetime, and ϵ as well as the branching ratio of Higgs to Z_D for different fiducial requirements
- Provide a benchmark for future SiD long-lived particle performance studies
- Study truth level acceptance
- Study default signal reconstruction efficiency and potential background sources in full simulation

Our Samples

- MC Generation
 - Using MG5@NLO + Pythia8
 - Using this <u>model</u>: from arXiv:1412.0018
- Fast Simulation w/Delphes for prompt decays and truth-level
- Full Simulation w/ILCSoft

Our signature:

 $e^+e^- \to ZH \to ZZ_DZ_D \quad ; Z_D \to 2l \text{ or } Z_D \to q \bar{q}$

- Created samples of different lifetimes by setting epsilon and the width
- Validated samples at truth-level

<u>Model Parameters:</u>

- $Z_D Mass$
- ε and Z_D width
- Higgs Branching ratio
 - Dark Higgs mass
 - Higgs/Dark Higgs mixing (v)

Dark Photon Decay Distance

- At truth-level
- Taken as the distance from the IP to the production vertex of the Z_D decay products
- Fits initial calculations using $\beta\gamma$ and $c\tau$

	Decay constant from exponential [mm]
M(Z _D) = 10 GeV, ε = $1 * 10^{-6}$	6.16
M(Z _D) = 10 GeV, ε = $1 * 10^{-7}$	608
M(Z _D) = 2 GeV, $\epsilon = 3.16*10^{-5}$	24.0
M(Z _D) = 2 GeV, $\epsilon = 3.16 * 10^{-6}$	2400

Decay radius of 10 GeV dark photon with $\varepsilon = 1 * 10^{-6}$ (Decay constant 6)

Dark Photon Acceptance

- Look at how the dark photon acceptance varies throughout the detector systems
 - Looking separately at hadronic and leptonic acceptance
- Select fiducial volumes that restrict dark photon decays to specific detector regions
 - Decaying within the vertex detector to study tracker performance
 - Decaying before the calorimeters includes decays that don't get reconstructed in the inner tracker
- Only require one dark photon in each event to pass the requirements for the regions

Defining Acceptance Regions

- Region 1:
 - Dark photon decaying within the vertex detector
 - 2 mm < Decay Radius < 60 mm
 - Minimum radius is much higher than the lowest possible radius, but choosing a larger minimum will help eliminate b quark backgrounds
- Region 2:
 - Dark photon decaying before the calorimeters
 - 2 mm < Decay Radius < 1250 mm
- General Requirements for both regions:
 - Both decay products need to have:
 - p > .3 MeV for Region 1, p > 1 GeV for Region 2
 - $\hat{\boldsymbol{\theta}} > 20$ degrees
 - d0 > 2 mm
 - For hadronic decays, each event needs a certain min. number of charged particles to pass requirements
 - Acceptances calculated for min. 3 and min. 4 charged

Potter, arXiv:2002.02399

Acceptance values

- Acceptance values for the two fiducial regions
 - Region 1 Before end of vertex detector
 - Region 2 Before beginning of calorimeters

$Z_D \rightarrow qq$, 3 pass reqs.	Region 1	Region 2	
M(Z _D) = 10 GeV, $\epsilon = 1 * 10^{-6}$	66.3%	69.6%	
M(Z _D) = 10 GeV, ε = $1 * 10^{-7}$	23.6%	88.5%	
M(Z _D) = 2 GeV, ε = $3.16 * 10^{-5}$	12.0%	14.0%	
M(Z _D) = 2 GeV, ε = $3.16 * 10^{-6}$	1.03%	8.92%	

$Z_D \rightarrow l^+ l^-$	Region 1	Region 2	$Z_D \rightarrow q \overline{q}$, 4 pass reqs.	Region 1	Region 2
M(Z _D) = 10 GeV, ϵ = $1 * 10^{-6}$	86.7%	86.7%	M(Z _D) = 10 GeV, ε = $1 * 10^{-6}$	59.1%	63.0%
M(Z _D) = 10 GeV, ϵ = $1 * 10^{-7}$	20.9%	98.1%	M(Z _D) = 10 GeV, ε = $1 * 10^{-7}$	20.3%	82.1%
M(Z _D) = 2 GeV, ϵ = 3. 16 * 10 ⁻⁵	95.0%	98.7%	M(Z _D) = 2 GeV, ε = $3.16 * 10^{-5}$	11.8%	14.0%
M(Z _D) = 2 GeV, ϵ = 3. 16 * 10 ⁻⁶	4.76%	61.7%	M(Z _D) = 2 GeV, ε = $3.16 * 10^{-6}$	1.01%	8.92%

Back of the Envelope Max. Sensitivity

- From the acceptance values, we can calculate the minimum branching ratio of $H \rightarrow Z_D Z_D$ in order to have sensitivity to a signal
- Assuming zero background and 100% efficiency
- If we expect zero background, we'll have sensitivity to signals that predict 3 or more dark photons
- $BR(Z_D \rightarrow ll)$ depends on the Z_D mass
- Cross section of Higgs production controlled by higgstrahlung (~310 fb)

$$N_{events_signal_exp} = Lumi \times \sigma_H \times BR_{H \to Z_D Z_D} \times (BR_{Z_D \to ll})^2 \times A \times E$$

Sensitivity Results

• Minimum branching ratio of Higgs to $Z_D Z_D$ for us to be able to detect the dark photons

	Min. BR(H→Z _D Z _D)	Min. BR(H→Z _D Z _D)
$Z_D \rightarrow l^+ l^-$	Region 1	Region 2
• M(Z _D) = 10 GeV, $\epsilon = 1 * 10^{-6}$	$6.20 * 10^{-5}$	$6.20 * 10^{-5}$
• $M(Z_D) = 10 \text{ GeV}, \epsilon = 1 * 10^{-7}$	$2.58 * 10^{-4}$	$5.48 * 10^{-5}$
• M(Z _D) = 2 GeV, $\epsilon = 3.16*10^{-5}$	$2.23 * 10^{-4}$	$2.14 * 10^{-4}$
• M(Z _D) = 2 GeV, $\epsilon = 3.16 * 10^{-6}$	$6.20 * 10^{-3}$	$3.24 * 10^{-4}$
$Z_D \rightarrow q\overline{q}$, 3 charged pass reqs.		
• M(Z _D) = 10 GeV, $\epsilon = 1 * 10^{-6}$	$4.19 * 10^{-5}$	$1.11 * 10^{-5}$
• M(Z _D) = 10 GeV, $\epsilon = 1 * 10^{-7}$	$1.49 * 10^{-5}$	$1.42 * 10^{-5}$
•M(Z _D) = 2 GeV, $\epsilon = 3.16 * 10^{-5}$	$5.60 * 10^{-5}$	$4.79 * 10^{-5}$
•M(Z _D) = 2 GeV, $\epsilon = 3.16 * 10^{-6}$	$6.53 * 10^{-4}$	$7.53 * 10^{-5}$

Curtin, Essig, Gori, & Shelton, arXiv:1412.0018

Outlook

- Look at the signal in full simulation
- Look at full simulation to study the effects from backgrounds
 - ZH, ZZ, $Ze^+e^-(Z \rightarrow bb, K_s)$ possible backgrounds

d0 of charged final state from Zd

17

Theta of charged final state from Zd

p of charged final state from Zd

19

Truth-level Validation: Invariant mass; $Z_D \rightarrow l^+ l^-$

- Comparison of invariant mass at truth level and in fast simulation (Delphes)
 - Delphes treats displaced decays as prompt
- Truth level: Mass of dark photons and Z bosons
- Reconstruction: Invariant mass of all l⁺l⁻ pairs for p > 5 GeV
 - Leptons are mainly from Z decays and dark photon decays, most Z decay products are hadronic, so we see a small peak in reconstruction at the Z mass from leptons

Truth Level Validation: Z_D Decay Product θ , p

