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Future Circular Collider (FCC) will have one 100 km tunnel, 
two stages: 

• Stage 1: FCC-ee (Z, W, H , Q) as Higgs EW and top factory 
at high luminosiSes 

• Stage 2: FCC-hh (~100 TeV) as natural conSnuaSon at 
energy fronSer, with ion and eh opSons 

The FCC is is a fronKer Higgs, top, electroweak, and flavor 
factory where we can directly discover new physics

Future Circular Collider

Enter LLPs!
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Standard model particles span a 
wide range of lifetimes (𝜏)

Long-Lived Particles (LLPs)
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Standard model particles span a 
wide range of lifetimes (𝜏)

We expect new phenomena to have a wide 
range of lifetimes as well 

But conventional searches for new phenomena 
at the LHC are for promptly decaying particles

Long-Lived Particles (LLPs)

We also need to look for new particles with long lifetimes!

Long-lived particle 
searches

𝑂(mm)

Conventional 
LHC searches
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How You Get LLPs

• Mechanisms to produce long-lived particles are the same ones 
as those that give us long-lived particles in the SM 

• Three main ways: 
• Heavy (off-shell) mediator 
• Small couplings 
• Compressed spectra
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Why Search for New LLPs?

• Why not? 
– No sign of new phenomena at the LHC yet!  Need to look everywhere 
– A new massive, long-lived particle would be a clear sign of new phenomena

• LLPs appear in many BSM scenarios 
– Supersymmetry, heavy neutral leptons, dark photons, 

inelastic dark matter, and more! 

• Can provide a dark matter candidate 

Great discovery potential!
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Long-Lived Particle Searches
• Wide variety of: 
– Charges 
– Final states 
– Decay locations 
– Lifetimes 

• Design signature-driven searches 

• Often interpret results with a 
benchmark model, but can 
expand to a variety of scenarios 

• Challenges of the LHC: detectors, 
triggers, offline reconstruction not 
designed for displaced particles
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Big opportunity to do 
something different at the FCC! 



Status of Searches
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• A number of searches for LLPs have been 
performed at ATLAS, CMS, and LHCb 
• Also at the Tevatron, LEP… 

• Still uncovered phase space! More to do! 
No discovery yet!



Detectors at the FCC
• Two detector concepts used for integration, performance, and cost 

estimates: 
• CLD design: adapted for the FCC-ee by the CERN Linear Collider 

Detector group 
• IDEA design: specifically designed for the FCC-ee (and CEPC) 

• Now ready to take a broader look at the physics potential and optimize 
detector designs for a complete physics program 

• Have the opportunity to design general-purpose detectors with LLPs in 
mind! 
• Can prioritize e.g. displaced tracking and precision timing 

information 
• Can also prioritize LLPs in the online filtering and offline 

reconstruction 
• FCC-ee new baseline is consistent with having 2 or 4 detectors 

• Opportunities for new, creative designs! 
• E.g. HECATE dedicated to long lifetimes (arXiv:2011.01005)
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https://arxiv.org/abs/2011.01005


Ongoing Work

• Snowmass LOI, now preparing white paper 
• Several Masters student theses done or in progress: 
• Sissel Bay Nielsen (University of Copenhagen, 2017) 
• Rohini Sengupta (Uppsala University, 2021) 
• Lovisa Rygaard (Uppsala University, 2022) 
• Tanishq Sharma (University of Geneva, 2022) 

• Will now discuss 3 long-lived benchmarks: 
1. Heavy Neutral Leptons (HNLs) 
2. Axion-like Particles (ALPs) 
3. Higgs bosons with exotic decays to LLPs
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https://snowmass21.org/energy/bsm_general
https://nbi.ku.dk/english/theses/masters-theses/sissel-bay-nielsen/SisselBayNielsen_MastersThesis.pdf
http://uu.diva-portal.org/smash/record.jsf?pid=diva2:1563610&dswid=5454


1st Benchmark: LL Heavy Neutral Leptons
• Right-handed, sterile neutrinos 
• Dirac or Majorana fermions with sterile neutrino quantum numbers 
• Heavy enough to not disrupt the simplest BBN bounds and/or unstable 

on cosmological timescales 
• Could shed light some open questions of the SM: 

• Neutrino masses 
• Baryon asymmetry 
• Dark matter
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90% CL exclusion limits for a HNL mixed with the 
electron neutrino, from the Physics Briefing Book 

Reach for HNL decays at the 
Tera-Z run of the FCC-ee 

FCC will probe space not constrained by 
astrophysics or cosmology,  

complementary to accelerator and 
neutrino prospects 

HNLs at the FCC-ee are right in the parameter region 
that is good for baryogenesis! arXiv:2106.16226

https://cds.cern.ch/record/2691414/
http://www.apple.com
https://arxiv.org/abs/2106.16226
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Simulating HNLs

• Generated Majorana and Dirac HNLs with the 
SM_HeavyN_CKM_AllMasses_LO and 
SM_HeavyN_Dirac_CKM_Masses_LO models 
(arXiv:1411.7305, arXiv:1602.06957) 

• Started with the  final state (suggested as early as 
1984(!) by S. Petcov) 

• FCC-ee,  

• Generated in Madgraph5 v3.2.0 + Pythia8 + Delphes, with 
the latest IDEA card 

• Experimental signature of LL HNLs: displaced vertex

eeν

s = 91 GeV
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LL HNL

 

[Valid when , arXiv:1905.11889] 

Get long-lived HNLs when coupling and 
mass are small

L ∼ 0.025m ( 10−6

Vl )
2

( 100 GeV
mN )

5

mN ≲ 100 GeV

LL HNL

very off-shellvery off-shell

https://arxiv.org/abs/1411.7305
https://arxiv.org/abs/1602.06957
https://inspirehep.net/literature/199313
https://arxiv.org/abs/1905.11889


HNL Lifetime and Decay Vertex

• Confirmed HNL signal kinematics behave as expected, at gen and reco level 

• For example, for m = 50 GeV, Ve = 1.41e-6, the mean of the generated lifetime is 1.5E-9 s —> 45 cm, which is what we 
expected 

• On the other hand, m = 90 GeV, Ve = 1.41e-6 is pretty prompt 

• Reco Lxyz (3D decay length) and vertex  distributions are also understood 

• m = 30 GeV, Ve = 1.41e-6 is fairly displaced, so we get less events reconstructed 

• See backup for more signal kinematics

χ2
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S vs B: Missing Energy

• Then added centrally-produced 
“spring2021” background samples 
with the IDEA detector, at 91 GeV CME 

• Can look at the total missing energy at 
an e+e- collider! 

• Considering missing energy > 10 GeV 
cut
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S vs B: Impact Parameter

• Another good discriminating variable is the impact parameter 
• Started by looking at transverse impact parameter (d0 or dxy), but will 

probably move to the 3D impact parameter (dxyz) 
• |d0|> 0.5 mm removes the vast majority of the SM background
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Note the x-axis ranges
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Selection
• First attempt at an event selection 
• Table shows the expected number of events at 150 ab-1, cumulative after each cut (on reco variables) 
• Caveat: here just used 100k (50k) raw/unscaled events for background (signal) 
• Most discriminating variables: missing energy and |d0| 
• Next steps: 

• Run over more events 
• Explore other variables
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Cumulative number of expected 
events at 150 ab-1

Backgrounds HNL Signals

Z->ee Z->tautau Z->bb Z->cc Z->uds Total 
Background

m = 30 GeV 
Ve = 1.41e-6

m = 70 GeV 
Ve = 1.41e-6

All generated events
2.19E+11 2.21E+11 9.97E+11 7.82E+11 2.79E+12 5.01E+12 4.98E-02 1.47E-02

Exactly 2 electrons
1.74E+11 5.52E+09 4.69E+08 4.69E+07 2.79E+07 1.80E+11 9.55E-03 1.18E-02

No photons, jets, or muons
1.53E+11 5.11E+09 0.00E+00 0.00E+00 0.00E+00 1.58E+11 9.22E-03 1.13E-02

Missing energy > 10 GeV
6.86E+08 2.58E+09 0.00E+00 0.00E+00 0.00E+00 3.27E+09 8.69E-03 1.12E-02

Both electrons with |d0|>0.5 mm
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 8.65E-03 9.00E-03



15−10 14−10 13−10 12−10
HNL Lifetime

0.1

0.2

0.3

0.4

0.5

0.6

en
tri

es
 n

or
m

al
iz

ed
 to

 u
ni

t a
re

a

15−10 14−10 13−10 12−10
HNL Lifetime (s)

0.5
0.6
0.7
0.8
0.9

1
1.1
1.2
1.3
1.4

M
aj

or
an

a/
D

ira
c

Dirac vs Majorana HNLs
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Tanishq Sharma

Dirac (LNC) and Majorana (LNC+LNV) HNLs produce different kinematic distributions: arXiv:2105.06576 
Variables that can distinguish between Majorana and Dirac HNLs:

  
(opening angle between final state electron/positron)
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Next: improve reconstruction, find more discriminating variables

https://arxiv.org/abs/2105.06576


What about FCC-hh and FCC-eh?
• The three different stages of the FCC are complementary 
• Provides a unique potential to discover HNLs
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FCC-ee

FCC-hh

FCC-eh

arXiv:1612.02728 FCC-ee 

• Direct search for single HNL production in W/Z decays 

• Sensitive to couplings down to 10-11 for M < W mass 

• Indirect constraints from from precision SM 
measurements (not discussed) 

FCC-hh 

• Direct search for single HNL production in W/Z decays 

• Can explore LNV and LFV 

• Can test HNLs with masses up to ~2 TeV 
FCC-eh 

• Can extend the reach of the FCC-hh up to ~2.7 TeV in mass 

• Best reach above W mass 

• Sensitive to LFV and LNV signatures

https://arxiv.org/abs/1612.02728


• Axion-like ParScles (ALPs) are pseudo Nambu-Goldstone bosons of spontaneously broken global symmetries in BSM scenarios 

• Very weakly coupled to the dark sector 

• Get long-lived ALPs when couplings and mass are small 

• At the FCC-ee: 

• Orders of magnitude of parameter space accessible 

• Especially sensiSve to final states with at least 1 photon 

• Privately generated ALPs in Madgraph5 v3.2.0 + Pythia8 + Delphes, with the latest IDEA card,  
(arXiv:1808.10323)

s = 91 GeV
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2nd Benchmark: LL Axion-Like Particles

arXiv:1808.10323, arXiv:2108.08949 

https://arxiv.org/abs/1808.10323
https://arxiv.org/abs/1808.10323
https://arxiv.org/pdf/2108.08949.pdf


• Started with 1 GeV ALP mass, vary the coupling 

• ALP mass confirmed with the reco invariant mass from the 2 photons coming from the ALP 

• ALP decay length will also be a nice discriminaSng variable
21

Variables to Explore
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• Higgs bosons could undergo exoSc decays to e.g. scalars that could be long-lived 

• ExoSc Higgs decays to LLPs could be explored at future colliders 

• Twin Higgs models with displaced exoSc Higgs boson decays, Hidden Valley models with Higgs bosons 
decaying to neutral LLPs (arXiv:1812.05588) 

• LLPs from Higgsinos or exoSc Higgs decays (arXiv:1712.07135) 

• Can do with e.g. this model in Madgraph
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3rd Benchmark: Exotic Higgs decays to LLPs

arXiv:1812.05588 arXiv:1712.07135
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https://arxiv.org/abs/1812.05588
https://arxiv.org/abs/1712.07135
http://insti.physics.sunysb.edu/~curtin/hahm_mg.html
https://arxiv.org/abs/1812.05588
https://arxiv.org/abs/1712.07135


Other Topics to Explore at the FCC
• How well we can distinguish a long-lived HNL/ALP/exotic Higgs 

decay from SM backgrounds 
• For leptonic decays? For hadronic decays? For decays to 

photons? 

• Vertexing performance of the FCC prototype detectors 

• Time-of-flight performance 

• Different detector configurations: can we probe a larger/different 

theory landscape? 

• Bigger tracker? More layers? 

• Majorana vs Dirac HNLs 

• Not an exhaustive list!
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Preliminary study 
(arXiv:2106.15459) shows 
the sensitivity of HNLs to 
different inner detector 

and cavern sizes
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https://arxiv.org/abs/2106.15459


• Informal group with: 

• MeeSngs: hQps://indico.cern.ch/category/5664/ 

• Mailing list: <LLP-FCCee-informal@cern.ch> 

• We welcome new people, join us!
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LLPs at FCC-ee group

https://indico.cern.ch/category/5664/


Summary
• To discover new phenomena, should look where no one else has looked before 
• One way to do this: long-lived particles! 
• The FCC will have the ability to uniquely probe LLP areas of phase space, and discovery 

potential! 
• Many interesting signals: Heavy Neutral Leptons, hidden sectors, axion-like particles, 

exotic Higgs decays, and more 
• Shown some brand new results 
• We now have the opportunity to design detectors and algorithms with LLPs in mind 
• A lot can be learned from Delphes 
• Plenty of phase space to explore at the FCC! Let’s make sure we don’t miss new physics!
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Backup

26



Generated HNL Kinematics

• At the FCC-ee, should look at total momentum, , and total missing energy! 
• Generator-level distributions look as expected 
• Momentum decreases as HNL mass increases 
• Slightly more central events as HNL mass increases

θ
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