Prospects for $\tilde{\tau}$ searches and measurements at the ILC

Teresa Núñez - DESY

- Motivation of $\tilde{\tau}$ studies
- Limits at LHC and LEP
- $\tilde{\tau}$ searches at the ILC
 - Limits
 - Analysis worst scenario
 - Effect of overlay particles
- Prospects for $\tilde{\tau}$ measurements at the ILC
- Outlook and conclusions

Mini-workshop on BSM at ILC, 28-02-22

QUANTUM UNIVERSE

Motivation for $\tilde{\tau}$ searches

Searching SUSY focused on best motivated NLSP candidates and most difficult scenarios

$\widetilde{ au}$ satisfies both conditions

Scalar superpartner of τ -lepton

- Two weak hypercharge eigenstates ($\tilde{\tau}_{R}, \tilde{\tau}_{L}$) not mass degenerate
- Mixing yields to the physical states ($\tilde{\tau}_1$, $\tilde{\tau}_2$), the lightest one being with high probability the lightest sfermion (stronger trilinear couplings)
- With assumed R-parity conservation:
 - pair produced (s-channel via Z⁰/ γ exchange, lowest σ with no coupling to Z⁰)
 - decay to LSP and τ , implying more difficult signal identification than the other sfermions

SUSY models with a light $\tilde{\tau}$ can accommodate the observed relic density ($\tilde{\tau}$ - neutralino coannihilation)

Limits at LEP and LHC

$\tilde{\tau}$ searches at LEP

HELMHOLTZ

GEMEINSCHAF

Valid for any mixing and any values of the not shown parameters

Limits at LEP and LHC (ctd.)

$\tilde{\tau}$ prospects at HL-LHC

ATL-PHYS-PUB-2018-048

No discovery potential for $\tilde{\tau}$ coannihilation scenarios or $\tilde{\tau}_R$ pair production

Expected gain in sensitivity to direct $\tilde{\tau}$ production

- Two models: $\tilde{\tau}_R$ and $\tilde{\tau}_L$
- No mixing
- Two $\tilde{\tau}$ assumed to be massdegenerate
- No mixing

Conditions and tools at ILC study

$\tilde{\tau}$ searches in worst scenario using SGV fast simulation

- Mixing angle set to 53 degrees (lowest cross sections)
- Focused on small mass differences ($\Delta M < 11 \text{ GeV}$)
- Cross-check larger mass differences

ILC experimental conditions

- Polarization P(e⁻,e⁺)=(+80%,-30%)
- $\sqrt{s} = 500 \text{ GeV}$ with 1.6 ab⁻¹ integrated luminosity (H-20, I-20 ILC500)

Event reconstruction using SGV adapted to the ILD detector concept at ILC

- Signal: Phytia 6.422
- Background: Whizard 1.95 (standard "DBD" background samples)
- No signal in the calorimeter closest to the beam pipe (the BeamCal)

Previous preliminary study

Signal characterization

Signal characterization (ctd.)

Signature:

- large missing energy and momentum
- high acollinearity, with little correlation to the energy of the decay products
- large fraction of detected activity in central detector (isotropic production of scalar particles)
- unbalanced transverse momentum
- no forward-backward asymmetry

SM processes with real or fake missing energy

Irreducible

4-fermion production with two of the fermions being neutrinos and two leptons

• *ZZ* -> *vv ττ*, *WW* -> *vτ vτ*

Almost irreducible

- ee -> ττ, ZZ -> vv ll, WW -> lv lv (l = e or μ)
- $ee \rightarrow \tau\tau + ISR$, $ee \rightarrow \tau\tau ee$, $\gamma\gamma \rightarrow \tau\tau$

Mis-identification of τ 's or of missing momentum

General cuts

Properties $\widetilde{\tau}$ -events "must" have

Maximum jet momentum:

- Missing energy (E_{miss}). E_{miss} > 2 x M_{LSP} GeV
- Visible mass (m_{vis}). m_{vis} < 2 x (M_{$\tilde{\tau}$} M_{LSP}) GeV
- Momentum of all jets (p_{jet}). p_{jet} < 70% Beam Momentum (or M_{τ̃}/M_{LSP} dependent)
- Two well identified τ 's and little other activity

Above 95 % signal efficiency for each of these cuts (excluding for the τ -identification)

$$P_{max} = \frac{\sqrt{s}}{4} (1 - (\text{MLSP} / M_{\tilde{\tau}})^2) (1 + \sqrt{1 - \frac{4M\tilde{\tau}^2}{s}})$$

| GEMEINSCHAFT

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

General cuts (ctd.)

Properties $\widetilde{\tau}$ -events "might" have, but background "rarely" has

- Missing transverse momentum
- Large acoplanarity
- Large transverse momentum wrt. thrust-axis
- High angles to beam

Cuts against properties of irreducible sources of background

- Charge asymmetry (Σcharge * cos(polar_angle))
- Difference between visible mass and Z mass

Properties that the background often "does not" have

- Low energy in small angles
- Low energy of isolated neutral clusters
 GEMEINSCHAFT

ILC expected limits

At ILC discovery and exclusion are almost the same

Analysis of worst scenario

Search for "worst" mixing angle

53 degrees $\tilde{\tau}$ mixing angle corresponds to the worst case for (unpolarized) LEP conditions

Use ILC conditions weighting contribution of both polarisations

Take into account effect of mixing in cross-section and signal efficiency

- Signal: Whizard + Tauola
- Background: Whizard 1.95 (standard "DBD" background samples)

Event reconstruction using SGV adapted to the ILD detector concept at ILC

Dependence of signal efficiency on $\tilde{\tau}$ mixing

- Signal efficiency depends on spectrum of detectable τ decays
 - Spectrum of τ decay products depends on τ polarisation
 - τ polarisation depends on $\tilde{\tau}$ and LSP mixing angles

Higgsino changes chirality but Bino does not

Dependence of signal efficiency on $\tilde{\tau}$ mixing

Selected background and signal events

Likelihood-ratio statistic used to weight both polarisations

In previous study background and signal events were reconstructed by sgv fast simulation

Check effect of full reconstructed events in $\widetilde{\tau}$ searches

Main difference:

Low p_T hadrons from $\gamma\gamma$ interactions

Electrons and positrons from beamstrahlung

87% (13%) overlay particles identified as pions (e^{+}/e^{-})

Overlay tracks (ctd.)

Samples:

- Background: ILD full simulated files •
- Signal: generated by whizard and reconstructed by sgv + overlay tracks from full • simulated background files

Search for algorithm reducing overlay tracks

Based on:

- transverse momentum
- angular distribution
- impact parameter significance

Overlay tracks:

low transverse momentum

OUANTUM UNIVERSE

- forward direction
- displaced vertices ٠

Effect of overlay tracks

Effect of overlay tracks

"Only overlay" events as misidentified $\tilde{\tau}$ events (preliminary)

At ILC with $\sqrt{s} = 500$ GeV in average 1.05 $\gamma\gamma$ -background events per bunch ~1400 $\gamma\gamma$ -background events per train

Taking overlay particles without any additional cut

Cuts DM = 10 GeV: no events passing cuts (< 0.001% -> < 0.014 events/train – 0.07 events/sec)

Cuts DM = 2 GeV: 0.35% events passing cuts (4.9 events/train – 24.5 events/sec)

"Only overlay" events as misidentified $\tilde{\tau}$ events (preliminary) (ctd.)

remaining tracks after vertexing (at least two track vertex with beam-spot constraint)

"Only overlay" events as misidentified $\tilde{\tau}$ events (preliminary) (ctd.)

remaining tracks after vertexing (at least two track vertex with beam-spot constraint)

"Only overlay" events as misidentified $\tilde{\tau}$ events (preliminary) (ctd.)

remaining tracks after vertexing (at least two track vertex with beam-spot constrain)

Cuts DM = 2 GeV: 0.005% events passing cuts (0.07 events/train – 0.35 events/sec)

Prospects for $\tilde{\tau}$ measurements at the ILC

Evaluate precision on $\tilde{\tau}$ properties measurements

- Two specific models, STCx and SPS1a, evaluated:
 - $\tilde{\boldsymbol{\tau}}_1$ NLSP, with ΔM < 10 GeV
 - $\tilde{\pmb{\tau}}_1$ and $\tilde{\pmb{\tau}}_2$, as well as other sfermions and lighter bosinos, can be produced at 500 GeV
 - excluded by LHC but not due to the $\tilde{\tau}$ sector
- Beam energy 500 GeV and integrated luminosity of 500 fb⁻¹ per beam polarization (expected one 1600 fb⁻¹)
 - $\tilde{\boldsymbol{\tau}}_1$ and $\tilde{\boldsymbol{\tau}}_2$ masses from spectrum end-points and cross sections
 - Cross sections
 - τ polarisation and $\tilde{\tau}$ mixing angle

HELMHOLTZ

QUANTUM UNIVERSE

EPJC, 76(4),1 (2016)

Phys Rev, D82,055016 (2010)

Prospects for $\tilde{\tau}$ measurements at the ILC

Evaluate precision on $\tilde{\tau}$ properties measurements

- Two specific models, STCx and SPS1a, evaluated:
 - $\tilde{\tau}_1$ NLSP, with ΔM < 10 GeV

HEI

- $\tilde{\pmb{\tau}}_1$ and $\tilde{\pmb{\tau}}_2$, as well as other sfermions and lighter bosinos, can be produced at 500 GeV
- excluded by LHC but not due to the $\tilde{ au}$ sector
- Beam energy 500 GeV and integrated luminosity of 500 fb⁻¹ per beam polarization (expected one 1600 fb⁻¹)

Per mil-level mass-measurements and per cent-level cross-section, polarization and mixing-angle measurements will be possible at the ILC

EPJC, 76(4),1 (2016)

Phys Rev, D82,055016 (2010)

Outlook/Conclusions

- ILC will discover/exclude $\tilde{\tau}$'s for any $\tilde{\tau}$ -LSP mass difference and any $\tilde{\tau}$ -mixing nearly up to the kinematic limit
- Even after HL-LHC large parts of the $\tilde{\tau}$ -LSP mass plane will remain unexplored
- Worst scenario for $\tilde{\tau}$ production at the ILC was reviewed taking into account ILC beam polarisation conditions
- Effect of overlay tracks on signal/background ratio for $\tilde{\tau}$ searches was analysed:
 - high DM: overlay harms background more than signal, increase of significance wrt sgv
 - low DM: overlay very similar to signal, strong reduction of significance In both cases effect of cuts against overlay tracks much smaller than adding overlay at all
- Study of "only overlay" events as possible misidentified $\tilde{\tau}$ events is undergoing
- If $\tilde{\tau}$'s exist in the kinematic range of the ILC, precision measurements of $\tilde{\tau}$ properties are possible at few percent level
- Contribution to Snowmass paper will be done on time HELMHOLTZ | GEMEINSCHAFT

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE