The virtual γ saga

Mikael Berggren¹

¹DESY, Hamburg

ILD SW&ANA phone meeting

CLUSTER OF EXCELLENCE

QUANTUM UNIVERSE

Mikael Berggren (DESY)

The virtual γ saga

2022-03-02 1/10

- The process e⁺e⁻ → e⁺e⁻ + f̄ is difficult to generate: If the 4-momentum transfer between incoming and outgoing e⁺⁽⁻⁾ (= q ≈ the scattering angle) becomes small, the process is dominated by scattering of virtual γ:s radiated off the e⁺⁽⁻⁾
- It becomes very hard to evaluate the phase-space integral from the full M.E. treatment, and event-generation becomes very slow.
- At some lowest *q*, we switch from the M.E. treatment to the equivalent photon approximation (EPA), where the flux of virtual (or better "quasi-real") photons is evaluated, and the process becomes γγ → ff, i.e. a 2 → 2 process.
- NB: In both cases, there is a minimum $M_{f\bar{f}}$ (4 GeV for μ :s and e:s, $2 \times M_{\tau}$ for τ :s, 10 GeV for quarks)

イロト 不得 トイヨト イヨト 二日

HOWEVER

- The regions don't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the shapes at the junction are different...

HOWEVER

- The regions don't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the shapes at the junction are different...

HOWEVER

- The regions don't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the shapes at the junction are different...

HOWEVER

- The regions don't match !
- A jump \sim factor 1/2 for each $e^{+(-)}$ replaced by an EPA...
- Also the s So: are differe All channels with at least one initial virtual γ have up to now been deferred to later in the 250 GeV mass-production! 30²⁵ 40³⁵

a ena 1Xa ena 2 as Entries

Mean y Mean y

Std Dev y 8.343

Std Dev y 8.385

15

20

497800 2.856

2 887

q_epa_1:q_epa_2_aa

15 20 25 30 35 40 45

50 50

The virtual γ saga: Problem solved!

- News from Wolfgang Kilian (WHIZARD author):
 - There *is* indeed a factor ≡ 2 missing per virtual photon if beam-polarisation is on !
- It is clear that the default cut in Q^2 between the M.E. and the EPA methods of generating $e^+e^- \rightarrow e^+e^- + X$ is too high wrt the cut on m_X .
- This I've studied, and found that $\sqrt{|Q^2|} = 0.2$ is a good separation, even for a cut m_X at 4. The cut in $\sqrt{|Q^2|}$ in the existing M.E. samples is at 4, so there is a missing part for $\sqrt{|Q^2|} \in [0.2, 4]$
- Tip from Filip:
 - There is a way to emulate an OR in the cuts-definition in the sindarin (a ∨ b ⇔ ¬(¬a ∧ ¬b) ...) ⇒ The "L-shaped" missing phase-space in the M.E. part of e⁺e⁻ → e⁺e⁻ + X can be generated in a single step.

The virtual γ saga: Problem solved!

- News from Wolfgang Kilian (WHIZARD author):
 - There is indeed a factor = 2 missing per virtual photon if beam-polarisation is on !
- It is clear that the default cut in Q^2 between the M.E. and the EPA methods of generating $e^+e^- \rightarrow e^+e^- + X$ is too high wrt the cut on m_X .
- This I've studied, and found that $\sqrt{|Q^2|} = 0.2$ is a good separation, even for a cut m_X at 4. The cut in $\sqrt{|Q^2|}$ in the existing M.E. samples is at 4, so there is a missing part for $\sqrt{|Q^2|} \in [0.2, 4]$
- Tip from Filip:
 - There is a way to emulate an OR in the cuts-definition in the sindarin (a ∨ b ⇔ ¬(¬a ∧ ¬b) ...) ⇒ The "L-shaped" missing phase-space in the M.E. part of e⁺e⁻ → e⁺e⁻ + X can be generated in a single step.

The virtual γ saga: Problem solved!

- News from Wolfgang Kilian (WHIZARD author):
 - There *is* indeed a factor ≡ 2 missing per virtual photon if beam-polarisation is on !
- It is clear that the default cut in Q^2 between the M.E. and the EPA methods of generating $e^+e^- \rightarrow e^+e^- + X$ is too high wrt the cut on m_X .
- This I've studied, and found that $\sqrt{|Q^2|} = 0.2$ is a good separation, even for a cut m_X at 4. The cut in $\sqrt{|Q^2|}$ in the existing M.E. samples is at 4, so there is a missing part for $\sqrt{|Q^2|} \in [0.2, 4]$
- Tip from Filip:
 - There *is* a way to emulate an *OR* in the cuts-definition in the sindarin (a ∨ b ⇔ ¬(¬a ∧ ¬b) ...) ⇒ The "L-shaped" missing phase-space in the M.E. part of e⁺e⁻ → e⁺e⁻ + X can be generated in a single step.

Q^2 vs. Q^2

- Full range ($\gamma\gamma$, e⁺/e⁻ γ and M.E. high and low Q^2)
- Transition M.E. high and low *Q*²
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ \equiv 2 per EPA $\gamma \Rightarrow$ OK !

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q²
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ \equiv 2 per EPA $\gamma \Rightarrow$ OK !

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q²
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ \equiv 2 per EPA $\gamma \Rightarrow$ OK !

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q²
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ \equiv 2 per EPA $\gamma \Rightarrow$ OK !

2022-03-02 5/10

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q²
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ \equiv 2 per EPA $\gamma \Rightarrow$ OK !

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q²
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ \equiv 2 per EPA $\gamma \Rightarrow$ OK !

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q²
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in

• ... and scale w/ \equiv 2 per EPA $\gamma \Rightarrow$ OK !

2022-03-02 5/10

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Q^2 vs. Q^2

- Full range (γγ, e⁺/e⁻γ and M.E. high and low Q²)
- Transition M.E. high and low Q²
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ ≡ 2 per EPA γ ⇒ OK !

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon p_T
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon p_T
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon *p_T*
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon *p_T*
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon p_T
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

イロト イポト イヨト イヨ

In all plots: black = aa, red = ae, green = M.E., low Q^2 , and blue = M.E., high Q^2 .

- Muon p
- Muon *p_T*
- Di-muon mass
- Di-muon mass, both μ:s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu\mu}$ close to $m_Z \Rightarrow$ Higgs to invisible, anyone ?

Paa 2f z | 020

Cross-sections of new samples

sample	leptonic	hadronic	# Mevents	suggestion
	pb	pb		(\sim 1 year)
aa_2f	2220	122	2342	426
ae_3f	1490	139	3258	296
ea_3f	1486	140	3252	296
4f_szeloq (LL and RR)	442	68.5	27	27
4f_szeloq (LR and RL)	448	69.1	138	138
Total			9017	1183

Numbers using the standard assumptions: 1 ab^{-1} for each of aa_2f, ae_3f and ea_3f (for the latter two: \times 2 polarisations), 1 ab^{-1} for each of 4f_szeloq LR and RL, and 0.2 ab^{-1} for each of 4f_szeloq LL and RR.

However: Note that the standard assumptions is a lot. The 5/1/1/5 ab^{-1} for the "normal" samples is ~ 10 times the full H20 statistics, and the reduced 1/0.2/0.2/1 is still more than the 11 years of H20 running, except for aa_2f, where it is about 1/2 of H20.

Mikael Berggren (DESY)

For aa_2f:

- Just 0.04 % of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV.
- The energy of the $f\bar{f}$ system, for events where both *f*:s are above 7 deg.
- So, typically there is only a few GeV that hits anything in these events.

For aa_2f:

- Just 0.04 % of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV.
- The energy of the $f\bar{f}$ system, for events where both *f*:s are above 7 deg.
- So, typically there is only a few GeV that hits anything in these events.

For aa_2f:

- Just 0.04 % of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV.
- The energy of the $f\bar{f}$ system, for events where both *f*:s are above 7 deg.
- So, typically there is only a few GeV that hits anything in these events.

< 47 ▶

< 3

- So, the average seen energy for the aa_2f class is only 11 GeV = 4 % of 250 GeV.
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^2 , one is in 25 % of the events.
- The average seen energy is \sim 94 GeV in this case = 37 % of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 % and 91 %, respectively.
- All this indicates that simulation ($\propto E_{vis}$), and reconstruction ($\propto E_{vis}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (\propto multiplicity)...

- So, the average seen energy for the aa_2f class is only 11 GeV = 4 % of 250 GeV.
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^2 , one is in 25 % of the events.
- The average seen energy is \sim 94 GeV in this case = 37 % of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 % and 91 %, respectively.
- All this indicates that simulation ($\propto E_{vis}$), and reconstruction ($\propto E_{vis}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (\propto multiplicity)...

- So, the average seen energy for the aa_2f class is only 11 GeV = 4 % of 250 GeV.
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^2 , one is in 25 % of the events.
- The average seen energy is \sim 94 GeV in this case = 37 % of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 % and 91 %, respectively.
- All this indicates that simulation ($\propto E_{vis}$), and reconstruction ($\propto E_{vis}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (\propto multiplicity)...

- So, the average seen energy for the aa_2f class is only 11 GeV = 4 % of 250 GeV.
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^2 , one is in 25 % of the events.
- The average seen energy is \sim 94 GeV in this case = 37 % of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 % and 91 %, respectively.
- All this indicates that simulation ($\propto E_{vis}$), and reconstruction ($\propto E_{vis}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (∝ multiplicity)...

- The problem with virtual γ :s is solved.
- Need to check how much of these we can afford to generate:
 - Cross-sections are Huge...
 - ... but events are small.
- → Need to check simulation and reconstruction for CPU and disk-space/event, and then decide.
- Note that even though the big samples are only 9 channels, there are lots of small cross-section channels also to be done $(e^+e^- \rightarrow e^+e^- + f\bar{f}f'\bar{f}' \dots).$
- Also some final odds and ends to sort out with WHIZARD authors.

- The problem with virtual γ :s is solved.
- Need to check how much of these we can afford to generate:
 - Cross-sections are Huge...
 - ... but events are small.
- ⇒ Need to check simulation and reconstruction for CPU and disk-space/event, and then decide.
- Note that even though the big samples are only 9 channels, there are lots of small cross-section channels also to be done $(e^+e^- \rightarrow e^+e^- + f\bar{f}f'\bar{f}' \dots).$
- Also some final odds and ends to sort out with WHIZARD authors.

- The problem with virtual γ :s is solved.
- Need to check how much of these we can afford to generate:
 - Cross-sections are Huge...
 - ... but events are small.
- ⇒ Need to check simulation and reconstruction for CPU and disk-space/event, and then decide.
- Note that even though the big samples are only 9 channels, there are lots of small cross-section channels also to be done $(e^+e^- \rightarrow e^+e^- + f\bar{f}f'\bar{f}' \dots).$
- Also some final odds and ends to sort out with WHIZARD authors.

< 口 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- The problem with virtual γ :s is solved.
- Need to check how much of these we can afford to generate:
 - Cross-sections are Huge...
 - ... but events are small.
- → Need to check simulation and reconstruction for CPU and disk-space/event, and then decide.
- Note that even though the big samples are only 9 channels, there are lots of small cross-section channels also to be done $(e^+e^- \rightarrow e^+e^- + f\bar{f}f'\bar{f}'...).$
- Also some final odds and ends to sort out with WHIZARD authors.