The virtual γ saga

Mikael Berggren ${ }^{1}$

${ }^{1}$ DESY, Hamburg
ILD SW\&ANA phone meeting

CLUSTER OF EXCELLENCE
QUANTUM UNIVERSE

The virtual γ saga: Intro

- The process $e^{+} e^{-} \rightarrow e^{+} e^{-}+f \bar{f}$ is difficult to generate: If the 4-momentum transfer between incoming and outgoing $\mathrm{e}^{+(-)}(=$ $q \approx$ the scattering angle) becomes small, the process is dominated by scattering of virtual γ :s radiated off the $\mathrm{e}^{+(-)}$
- It becomes very hard to evaluate the phase-space integral from the full M.E. treatment, and event-generation becomes very slow.
- At some lowest q, we switch from the M.E. treatment to the equivalent photon approximation (EPA), where the flux of virtual (or better "quasi-real") photons is evaluated, and the process becomes $\gamma \gamma \rightarrow f \bar{f}$, i.e. a $2 \rightarrow 2$ process.
- NB: In both cases, there is a minimum $M_{f \bar{f}}(4 \mathrm{GeV}$ for μ :s and e:s, $2 \times M_{\tau}$ for $\tau: \mathrm{s}, 10 \mathrm{GeV}$ for quarks)

The virtual γ saga: Intro

HOWEVER

- The regions don't match!
- A jump \sim factor $1 / 2$ for each $\mathrm{e}^{+(-)}$replaced by an EPA...
- Also the shapes at the junction are different...

The virtual γ saga: Intro

HOWEVER

- The regions don't match!
- A jump ~ factor 1/2 for each $\mathrm{e}^{+(-)}$replaced by an EPA...
- Also the shapes at the junction are different...

The virtual γ saga: Intro

HOWEVER

- The regions don't match!
- A jump ~ factor $1 / 2$ for each $\mathrm{e}^{+(-)}$replaced by an EPA...
- Also the shapes at the junction are different...

The virtual γ saga: Intro

HOWEVER

- The regions don't match!
- A jump ~ factor $1 / 2$ for each $\mathrm{e}^{+(-)}$replaced by an EPA...
- Also the so: are differe All channels with at least one initial virtual γ have up to now been deferred to later in the 250 GeV mass-production!

The virtual γ saga: Problem solved!

- News from Wolfgang Kilian (Whizard author):
- There is indeed a factor $\equiv 2$ missing per virtual photon if beam-polarisation is on !
- It is clear that the default cut in Q^{2} between the M.E. and the EPA methods of generating $e^{+} e^{-} \rightarrow e^{+} e^{-}+X$ is too high wrt the cut
on m_{X}.
- This l've studied, and found that $\sqrt{\left|Q^{2}\right|}=0.2$ is a good separation,
even for a cut m_{X} at 4 . The cut in $\sqrt{\left|Q^{2}\right|}$ in the existing M.E.
samples is at 4 , so there is a missing part for $\sqrt{\left|Q^{2}\right|} \in[0.2,4]$
- Tip from Filip:

The virtual γ saga: Problem solved!

- News from Wolfgang Kilian (Whizard author):
- There is indeed a factor $\equiv 2$ missing per virtual photon if beam-polarisation is on !
- It is clear that the default cut in Q^{2} between the M.E. and the EPA methods of generating $e^{+} e^{-} \rightarrow e^{+} e^{-}+X$ is too high wrt the cut on m_{X}.
- This l've studied, and found that $\sqrt{\left|Q^{2}\right|}=0.2$ is a good separation, even for a cut m_{X} at 4 . The cut in $\sqrt{\left|Q^{2}\right|}$ in the existing M.E. samples is at 4 , so there is a missing part for $\sqrt{\left|Q^{2}\right|} \in[0.2,4]$

The virtual γ saga: Problem solved!

- News from Wolfgang Kilian (Whizard author):
- There is indeed a factor $\equiv 2$ missing per virtual photon if beam-polarisation is on !
- It is clear that the default cut in Q^{2} between the M.E. and the EPA methods of generating $e^{+} e^{-} \rightarrow e^{+} e^{-}+X$ is too high wrt the cut on m_{X}.
- This l've studied, and found that $\sqrt{\left|Q^{2}\right|}=0.2$ is a good separation, even for a cut m_{X} at 4 . The cut in $\sqrt{\left|Q^{2}\right|}$ in the existing M.E. samples is at 4 , so there is a missing part for $\sqrt{\left|Q^{2}\right|} \in[0.2,4]$
- Tip from Filip:
- There is a way to emulate an $O R$ in the cuts-definition in the sindarin $(a \vee b \Leftrightarrow \neg(\neg a \wedge \neg b) \ldots$...) \Rightarrow The "L-shaped" missing phase-space in the M.E. part of $e^{+} e^{-} \rightarrow e^{+} e^{-}+X$ can be generated in a single step.

Q^{2} vs. Q^{2}

- Full range ($\gamma \gamma$, $\mathrm{e}^{+} / \mathrm{e}^{-} \gamma$ and M.E. high and low Q^{2})
- Transition M.E. high and low Q^{2}
- and zoom in $=$ OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ $\equiv 2$ per EPA $\gamma \Rightarrow$ OK!

P4f_szehiq_I_020

Q^{2} vs. Q^{2}

- Full range $(\gamma \gamma$, $\mathrm{e}^{+} / \mathrm{e}^{-} \gamma$ and M.E. high and low Q^{2})
- Transition M.E. high and low Q^{2}
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in

- Full range ($\gamma \gamma$, $\mathrm{e}^{+} / \mathrm{e}^{-} \gamma$ and M.E. high and low Q^{2})
- Transition M.E. high and low Q^{2}
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ $\equiv 2$ per EPA $\gamma \Rightarrow$ OK!

P4f_szehiq_I_020

Q^{2} vs. Q^{2}

- Full range ($\gamma \gamma$, $\mathrm{e}^{+} / \mathrm{e}^{-} \gamma$ and M.E. high and low Q^{2})
- Transition M.E. high and low Q^{2}
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ $\equiv 2$ per EPA

Q^{2} vs. Q^{2}

- Full range ($\gamma \gamma$, $\mathrm{e}^{+} / \mathrm{e}^{-} \gamma$ and M.E. high and low Q^{2})
- Transition M.E. high and low Q^{2}
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA

Q^{2} vs. Q^{2}

- Full range ($\gamma \gamma$, $\mathrm{e}^{+} / \mathrm{e}^{-} \gamma$ and M.E. high and low Q^{2})
- Transition M.E. high and low Q^{2}
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA

- Full range ($\gamma \gamma$, $\mathrm{e}^{+} / \mathrm{e}^{-} \gamma$ and M.E. high and low Q^{2})
- Transition M.E. high and low Q^{2}
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
 per EPA
- Full range ($\gamma \gamma$, $\mathrm{e}^{+} / \mathrm{e}^{-} \gamma$ and M.E. high and low Q^{2})
- Transition M.E. high and low Q^{2}
- and zoom in \Rightarrow OK.
- Transition M.E. to EPA
- and zoom in
- ... and scale w/ $\equiv 2$ per EPA $\gamma \Rightarrow$ OK!

Properties of new events (for $\int \mathcal{L}=5 \mathrm{fb}^{-1}$)

In all plots: black $=$ aa, red $=$ ae, green $=$ M.E., low Q^{2}, and blue $=$ M.E., high Q^{2}.

- Muon p
- Muon D_{T}
- Di-muon mass
- Di-muon mass, both μ :s in tracking.
- Recoil-mass
- Recoil-mass, m m close to $m_{z} \Rightarrow$ Higgs to

Properties of new events (for $\int \mathcal{L}=5 \mathrm{fb}^{-1}$)

In all plots: black = aa, red = ae, green $=$ M.E., low Q^{2}, and blue $=$ M.E., high Q^{2}.

- Muon p
- Muon p_{T}
- Di-muon mass
- Di-muon mass, both μ :s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu \mu}$ close to $m_{Z} \Rightarrow$ Higgs to

Properties of new events (for $\int \mathcal{L}=5 \mathrm{fb}^{-1}$)

In all plots: black $=$ aa, red $=$ ae, green $=$ M.E., low Q^{2}, and blue $=$ M.E., high Q^{2}.

- Muon p
- Muon p_{T}
- Di-muon mass
- Di-muon mass, both μ :s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu \mu}$ close
 to $m_{Z} \Rightarrow$ Higgs to invisible, anyone?

Properties of new events (for $\int \mathcal{L}=5 \mathrm{fb}^{-1}$)

In all plots: black $=$ aa, red $=$ ae, green $=$ M.E., low Q^{2}, and blue $=$ M.E., high Q^{2}.

- Muon p
- Muon p_{T}
- Di-muon mass
- Di-muon mass, both μ :s in tracking.
 to $m_{Z} \Rightarrow$ Higgs to invisible, anyone?

Properties of new events (for $\int \mathcal{L}=5 \mathrm{fb}^{-1}$)

In all plots: black = aa, red = ae, green $=$ M.E., low Q^{2}, and blue $=$ M.E., high Q^{2}.

- Muon p
- Muon p_{T}
- Di-muon mass
- Di-muon mass, both μ :s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu \mu}$ close to $m_{Z} \Rightarrow$ Higgs to

Paa_2f_z_!_020

Properties of new events (for $\int \mathcal{L}=5 \mathrm{fb}^{-1}$)

In all plots: black = aa, red = ae, green $=$ M.E., low Q^{2}, and blue $=$ M.E., high Q^{2}.

- Muon p
- Muon p_{T}
- Di-muon mass
- Di-muon mass, both μ :s in tracking.
- Recoil-mass
- Recoil-mass, $m_{\mu \mu}$ close to $m_{Z} \Rightarrow$ Higgs to invisible, anyone?

Cross-sections of new samples

sample	leptonic pb	hadronic pb	\# Mevents	suggestion (~ 1 year)
aa_2f	2220	122	2342	426
ae_3f	1490	139	3258	296
ea_3f	1486	140	3252	296
4f_szeloq (LL and RR)	442	68.5	27	27
4f_szeloq (LR and RL)	448	69.1	138	138
Total			9017	1183

Numbers using the standard assumptions: $1 \mathrm{ab}^{-1}$ for each of aa_2f, ae_3f and ea_3f (for the latter two: $\times 2$ polarisations), $1 \mathrm{ab}^{-1}$ for each of 4 f _szeloq LR and RL, and $0.2 \mathrm{ab}^{-1}$ for each of 4 f _szeloq $L L$ and RR.
However: Note that the standard assumptions is a lot. The $5 / 1 / 1 / 5$ ab^{-1} for the "normal" samples is ~ 10 times the full H20 statistics, and the reduced $1 / 0.2 / 0.2 / 1$ is still more than the 11 years of H 20 running, except for aa_2f, where it is about $1 / 2$ of H 20 .

Small events

For aa_2f:

- Just 0.04 \% of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV .
- The energy of the $\overline{f f}$ system, for events where both f :s are above 7 deg.
- So, typically there is only a few GeV that hits anything in these

events.

Small events

For aa_2f:

- Just 0.04% of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV .
- The energy of the $f \bar{f}$ system, for events where both $f: s$ are above 7 deg.
- So, typically there is only a few GeV that hits anything in these
events.

Small events

For aa_2f:

- Just 0.04 \% of the events will have a beam-remnant seen in the BeamCal, and then it only deposits a few GeV .
- The energy of the $f \bar{f}$ system, for events where both f :s are above 7 deg.

- So, typically there is only a few GeV that hits anything in these events.

Small events

- So, the average seen energy for the aa_2f class is only $11 \mathrm{GeV}=$ 4 \% of 250 GeV .
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^{2}, one is in 25% of the events.
- The average seen energy is $\sim 94 \mathrm{GeV}$ in this case $=37 \%$ of 250 GeV.
- Both $2 a$ _ $2 f$ and ae/ea_3f are mainly leptonic: 94% and 91%, respectively.
- All this indicates that simulation $\left(\propto E_{v i s}\right)$, and reconstruction $\left(\propto E_{v i s}\right.$ and multiplicity) should be much faster than for the "typical' events.
- The same goes for disk-space (\propto multiplicity).

Small events

- So, the average seen energy for the aa_2f class is only $11 \mathrm{GeV}=$ 4 \% of 250 GeV .
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^{2}, one is in 25% of the events.
- The average seen energy is $\sim 94 \mathrm{GeV}$ in this case $=37 \%$ of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 \% and 91 \%, respectively.
- All this indicates that simulation ($\propto E_{\text {vis }}$), and reconstruction ($\propto E_{\text {vis }}$ and multiplicity) should be much faster than for the "typical' events.
- The same goes for disk-space (o multiplicity)

Small events

- So, the average seen energy for the aa_2f class is only $11 \mathrm{GeV}=$ 4 \% of 250 GeV .
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^{2}, one is in 25% of the events.
- The average seen energy is $\sim 94 \mathrm{GeV}$ in this case $=37 \%$ of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 \% and 91 \%, respectively.
- All this indicates that simulation $\left(\propto E_{v i s}\right)$, and reconstruction
$\left(\propto E_{\text {vis }}\right.$ and multiplicity) should be much faster than for the "typical' events.
- The same goes for disk-space (o multiplicity)

Small events

- So, the average seen energy for the aa_2f class is only $11 \mathrm{GeV}=$ 4 \% of 250 GeV .
- Also the ae/ea_3f events are smaller than "typical" events: One beam-remnant is down the beam-pipe, but also the other, high Q^{2}, one is in 25% of the events.
- The average seen energy is $\sim 94 \mathrm{GeV}$ in this case $=37 \%$ of 250 GeV.
- Both aa_2f and ae/ea_3f are mainly leptonic: 94 \% and 91 \%, respectively.
- All this indicates that simulation ($\propto E_{v i s}$), and reconstruction ($\propto E_{\text {vis }}$ and multiplicity) should be much faster than for the "typical" events.
- The same goes for disk-space (\propto multiplicity)...

Conclusion and out-look

- The problem with virtual γ :s is solved.
- Need to check how much of these we can afford to generate:
- Cross-sections are Huge...
- \Rightarrow Need to check simulation and reconstruction for CPU and disk-space/event, and then decide.
- Note that even though the big samples are only 9 channels, there are lots of small cross-section channels also to be done $\left(e^{+} e^{-} \rightarrow e^{+} e^{-}+f \overline{f f} f^{\prime} \bar{f}^{\prime} \ldots\right)$.
- Also some final odds and ends to sort out with Whizard authors.

Conclusion and out-look

- The problem with virtual $\gamma:$ s is solved.
- Need to check how much of these we can afford to generate:
- Cross-sections are Huge...
- ... but events are small.
- \Rightarrow Need to check simulation and reconstruction for CPU and disk-space/event, and then decide.
- Note that even though the bia samples are only 9 channels, there are lots of small cross-section channels also to be done ($e^{+} e^{-} \rightarrow e^{+} e^{-}+f \bar{f} f^{\prime} \bar{f}^{\prime} \ldots$).
- Also some final odds and ends to sort out with Whizard authors.

Conclusion and out-look

- The problem with virtual γ :s is solved.
- Need to check how much of these we can afford to generate:
- Cross-sections are Huge...
- ... but events are small.
- \Rightarrow Need to check simulation and reconstruction for CPU and disk-space/event, and then decide.
- Note that even though the big samples are only 9 channels, there are lots of small cross-section channels also to be done
- Also some final odds and ends to sort out with Whizard authors.

Conclusion and out-look

- The problem with virtual γ :s is solved.
- Need to check how much of these we can afford to generate:
- Cross-sections are Huge...
- ... but events are small.
- \Rightarrow Need to check simulation and reconstruction for CPU and disk-space/event, and then decide.
- Note that even though the big samples are only 9 channels, there are lots of small cross-section channels also to be done ($e^{+} e^{-} \rightarrow e^{+} e^{-}+f \bar{f} f^{\prime} \bar{f}^{\prime} \ldots$).
- Also some final odds and ends to sort out with Whizard authors.

