H --> ss

The physics case

- ILC detectors will have excellent vertex resolution
- The precision measurement of Higgs BR is a pillar of the physics program
 - The measurement of the strange Yukawa coupling pushes the envelope
 - We should understand how close we can get to the SM value, what it takes to get there and what prevents us from getting closer
 - This will immediately improve our understanding of the other Higgs BR measurements
 - It will allow us to constrain the BSM parameter space

Samples (Thank you!)

- n23n23H(->ss)
 - Created to have a first look at the channel, first time to look at light quarks
 - Nice clean sample to study signal
 - Not the easiest channel for physics, because of Z -> qq
 - Only one polarization state
- Going to a physics analysis
 - Using ILD_I5_o1_v02/v02-02 as background samples
 - Main background is from Z <--> H confusion and from other H decays
 - New samples needed (already there!)
 - nnHqq -> (all neutrino flavors, q=u,d,s)
 - IIHqq (q = u,d,s)
 - q1q1Hq2q2(q1=udscb, q2=u,d,s)

Analysis strategy

- Flavor tagger (already there)
 - Excellent benchmark for taggers
 - First time we look into gluons directly
 => See QCD @ ILC talk in physics meeting
- Complete the nnH with the missing samples
- Add IIH
- Not sure if we get to qqH before Snowmass
 - Certainly an extremely interesting channel for this analysis
- It may be more fruitful to understand sensitivity to BSM than to explore the SM to the ultimate precision
 - Increased H->ss BF, at what cost? What about other BF? Global H fit?

