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Impedance and power requirements for the ILC Crab Cavity are determined by the beam offset 

with respect to the considered mode electrical axis. Note that this offset may be different for 

different modes because of the cavity field perturbations – due to e.g., a fundamental power coupler 

or HOM couplers – and manufacturing errors.  

 

I. HOM impedance limitation due to resonance excitation 
 

The crab cavity HOM impedance should be small enough to avoid single bunch effects such as 

1. Distortion of the crabbing voltage along the bunch 

2. Emittance dilution 

In addition to the single-bunch effects, one may have resonance excitation of an HOM mode by 

the beam. The cavity resonance excitation is determined by the cavity HOM spectrum and the 

beam spectrum. Resonance excitation provides the maximal voltage which changes the beam 

particle transverse momentum 𝑝⊥: 
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where 𝑥0 is the beam offset with respect to the HOM electric axis, 𝜔0 is the HOM frequency, 𝜔 is 

the beam spectrum line frequency, 𝑘0 = 𝜔0 𝑐⁄  is the wavenumber,  𝐼0 is the average beam current, 

and (
𝑟⊥

𝑄
) is the HOM transverse impedance in Ohm; Q is the loaded quality factor. The transverse 

impedance (for example, horizontal) is defined as  
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Here W is the energy stored in the cavity, 𝐸𝑧(𝑥, 𝑦, 𝑧) is the longitudinal electric field of the HOM. 

On resonance, the kick voltage amplitude 𝑈𝑘𝑖𝑐𝑘 = |𝑼𝑘𝑖𝑐𝑘| is 

𝑈𝑘𝑖𝑐𝑘 = 𝑘0𝑥0𝐼0𝑄 (
𝑟⊥

𝑄
) = 𝑘0𝑥0𝐼0𝑟⊥,     (3) 

where 𝑟⊥= 𝑄 (
𝑟⊥

𝑄
) is the HOM shunt impedance, and 𝑄is the HOM loaded quality factor. 

In pulsed regime, 

𝑈𝑘𝑖𝑐𝑘 = 𝑘0𝑥0𝐼𝑝𝑟⊥
1−𝑒−𝑡𝑝/𝜏

1−𝑒−1/(𝑓𝑟𝜏) ,      (4) 

 



here 𝐼𝑝 is the pulse beam current, 𝑡𝑝 is the pulse width,  𝑓𝑟 is the pulse repetition rate, and 𝜏 =
2𝑄

𝜔0
 

is the time constant. If Q is very large, and 𝑓𝑟𝜏 >> 1, the formula may be simplified; in this case 

the kick induced by the beam is determined by the average current as in CW regime (see Eq. (3)). 

If the time constant is much smaller than the pulse width, i.e., 
𝑡𝑝

𝜏
≫ 1, the kick induced by the 

beam is determined by pulsed current  

𝑈𝑘𝑖𝑐𝑘 = 𝑘0𝑥0𝐼𝑝𝑟⊥.       (5) 

It is the most pessimistic case, which will be used for further estimations. 

1. To avoid distortion of the crabbing voltage, horizontal kick 𝑈𝑘𝑖𝑐𝑘 caused by HOM should be 

much smaller than the crabbing voltage 𝑈0. In the most pessimistic case of resonance between 

the HOM and the beam spectrum (or when 𝜔0 = 𝜔), one gets the requirement for the kick 

voltage amplitude 

𝑈𝑘𝑖𝑐𝑘𝜎𝑧𝑘0 = 𝑘0
2𝜎𝑧𝑥0𝐼𝑝𝑟⊥ ≪ 𝑈0 𝜎𝑧𝜔𝑅𝐹/𝑐,     

  (6) 

and  

𝑟⊥ ≪
𝑈0 𝜔𝑅𝐹/𝑐

𝑘0
2𝑥0𝐼𝑝

.       (7) 

Here 𝜔𝑅𝐹 is the RF frequency. 

2. To avoid emittance dilution, the transverse kick spread along the bunch caused by an HOM 

should be much smaller than the transverse momentum spread 𝜎𝑝⊥
𝑐/𝑒, or 

𝑈𝑘𝑖𝑐𝑘 𝜎𝑧𝑘0 = 𝑘0
2𝑥0𝜎𝑧𝐼𝑝𝑟⊥ ≪

𝜎𝑝⊥𝑐

𝑒
,      

  (8) 

because in resonance the kick is shifted versus the beam current by 90° - see (1). On the other 

hand, one has 

𝜎𝑝⊥𝑐

𝑒
=

𝑝||𝑐

𝑒
√

𝜀

𝛾𝛽
= 𝑈√

𝜀

𝛾𝛽
,      (9) 

where U is the beam energy, 𝜀 is the normalized transverse emittance, 𝛾 is the relativistic factor 

and 𝛽 is the beta-function corresponding to the cavity position. Therefore, for both horizontal 

and vertical transverse shunt impedance one needs 

𝑟⊥ ≪
𝑈

𝑘0
2𝑥0𝜎𝑧𝐼𝑝

√
𝜀

𝛾𝛽
.       (10) 

Here 𝑟⊥ is the horizontal or vertical transverse shunt impedance, 𝑥0 is the horizontal or vertical 

transverse offset, and 𝜀 is the horizontal or vertical transverse normalized emittance. 

Note that if  HOM frequency is far of the harmonic of operating frequency, the kick is the same 

along the bunch, and can be compensated by correctors. 

 



II. Required RF power 
 

RF power necessary to maintain the crabbing voltage should compensate the ohmic losses in the 

cavity – negligible for SC cavities – and compensate the voltage induced by the beam if the beam 

has an offset with respect to the electric axis of the cavity. Note that the kick voltage induced by 

the beam may be in phase or out of phase with the crabbing voltage depending on the sign of the 

offset. The maximal required RF power P for the cavity detuned from the resonance frequency by 

Δω is (see Appendix III): 
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Here 𝜔0 = 𝜔𝑅𝐹 is the RF frequency. The optimal external Q corresponding to minimal power is 
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,    (12) 

where 𝑄0 is the cavity unloaded quality factor. For the SRF cavity one can use simplified 

estimation for the loaded Q: 
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If the beam offset is zero, the power is determined by the maximal cavity detuning Δω = 2πΔf :  

𝑃 =
𝑈0

22Δ𝜔/𝜔0

(
𝑟⊥
𝑄

)
 = 2

𝑈0
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(
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)
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The horizontal beam offset does not influence the required power if 

𝑥0 ≪ 
2Δ𝜔

𝜔0
∙

𝑈0

𝐼𝑝𝑘0(
𝑟⊥
𝑄

)
.       (15) 

In the opposite case, if  

𝑥0 ≫
2Δ𝜔

𝜔0
∙

𝑈0

𝐼𝑝𝑘0(
𝑟⊥
𝑄

)
       (16) 

the required power is determined by the pulsed beam current, 

𝑃 = 𝑈0𝐼𝑝𝑘0𝑥0.       (17) 

Anyway, the required power is determined by the cavity, and is not the fundamental requirement. 

 

III. Single-bunch effects 
 

If the bunch has very high population, the kick caused by the bunch transverse horizontal wake 

potential may alter the crabbing kick voltage. This gives us limitation for the transverse kick-

factor: 



𝑘⊥ ≪
𝑈0𝜎𝑧𝜔𝑅𝐹/𝑐

𝑞𝑥0
 ,       (18) 

where 𝑞 is the bunch charge and 𝑥0 is the beam horizontal offset. The transverse vertical wake 

potential should not increase the bunch emittance:  

𝑘⊥ ≪
𝑈

𝑞𝑦0
√

𝜀

𝛾𝛽
 .       (19) 

Here 𝑦0 is the beam vertical offset. 

 

IV. Cavity detuning for operation without crabbing 
 

If the cavity is not in operation, it should be detuned properly such a way that the voltage induced 

by the beam does not affect the beam emittance. For detuned cavity the kick caused by the induced 

field is about the same for all the particles of a short bunch and is equal to the kick amplitude 𝑈𝑘𝑖𝑐𝑘, 

see (1). It should be much smaller than the transverse momentum spread 𝜎𝑝⊥
𝑐/𝑒.  If the cavity 

detune |∆𝑓|is high compared to the bandwidth, the transverse kick is equal to 

 

𝑈𝑘𝑖𝑐𝑘 ≈
1

2𝑚
× 𝑘0𝑥0𝐼0 (

𝑟⊥

𝑄
)𝑄,                                                                    (20) 

 

where(
𝑟⊥

𝑄
) and Q are transverse impedance and loaded quality factor of the operating mode, 𝑘0 is 

the wave number corresponding to the operation mode frequency, i.e., 𝑘0 = 2𝜋𝑓𝑅𝐹/𝑐 and m is 

ratio of the cavity detune to the bandwidth, i.e., 

 

 𝑚 =
|𝑓𝑅𝐹−𝑓|

𝑓𝑅𝐹
× 𝑄 ≡

|∆𝑓|

𝑓𝑅𝐹
× 𝑄.                                                               (21) 

 

Therefore, taking into account (9), one has 

 

1

2𝑚
× 𝑘0𝑥0𝐼0 (

𝑟⊥

𝑄
)𝑄 ≪ 𝑈√

𝜀𝑥

𝛾𝛽𝑥
,                                                                   (22) 

or  

 

𝑚 ≫
𝜋𝑓𝑅𝐹𝑥0𝐼0(

𝑟⊥
𝑄

)𝑄

𝑐𝑈√
𝜀𝑥

𝛾𝛽𝑥

.                                                                                  (23) 

 

V. Requirements for ILC 

 
 

For the current version of ILC collider we have 

Beam energy      U = 250 GeV and γ = 5×105 

Pulsed beam current     Ip = 5.8 mA 



Pulse width      tp = 727 μs 

Repetition rate      fr = 5 Hz 

Average beam current     Iav = 20 μA 

Vertical β function at the cavity position  βy = 15.4 km  

Horizontal β function at the cavity position  βx = 23.2 km  

Bunch charge      q = 3.2 nC 

Crab cavity kick voltage    𝑈0= 0.92 MV (2.6 GHz) 

The bunch length     𝜎𝑧 = 300 μm 

Normalized vertical emittance     y= 35 nm 

Normalized horizontal emittance    x= 10 μm 

 

Suppose the HOM electric axis offset with respect to the beam is 𝑥0 = 𝑦0 =1 mm.  

1. In this case, to avoid distortion of the crab voltage kick distribution along the bunch, one has 

for the horizontal shunt impedance of the “most dangerous mode”: 

 𝑟⊥ ≪
𝑈0

𝜔𝑅𝐹
𝑐

𝑘0
2𝑥0𝐼𝑝

 = 
𝑈0𝑐𝑓𝑅𝐹

2𝜋𝑓𝐻𝑂𝑀
2 𝑥0𝐼𝑝

   and                    (24) 

𝑟⊥𝑓𝐻𝑂𝑀
2 ≪

𝑈0𝑐𝑓𝑅𝐹

2𝜋𝑥0𝐼𝑝
  = 19 GOhm∙GHz2.               (25) 

2. To exclude the HOM influence on the vertical emittance, one should have 

𝑟⊥ ≪
𝑈

𝑘0
2𝑦0𝜎𝑧𝐼𝑝

√
𝜀𝑦

𝛾𝛽𝑦
  and      

 (26) 

𝑟⊥𝑓𝐻𝑂𝑀
2 ≪

𝑈𝑐2

(2𝜋)2𝜎𝑧𝑦0𝐼𝑝
√

𝜀𝑦

𝛾𝛽𝑦
  =0.7 GOhm∙GHz2.   

 (27) 

3. To exclude the HOM influence on the horizontal emittance, one should have 

𝑟⊥𝑓𝐻𝑂𝑀
2 ≪

𝑈𝑐2

(2𝜋)2𝜎𝑧𝑥0𝐼𝑝
√

𝜀𝑥

𝛾𝛽𝑥
  = 9.6 GOhm∙GHz2      (28) 

One can see from (21) and (24) that the value of 𝑟⊥𝑓𝐻𝑂𝑀
2 is limited by the HOM influence on the 

horizontal emittance. 

4. The horizontal kick factor necessary to avoid the crabbing voltage distortion should be 

𝑘⊥ ≪
𝑈0𝜎𝑧𝜔𝑅𝐹/𝑐

𝑞𝑥0
 = 4.6×103 V/pC/m     (29) 

5. The kick factor necessary to avoid horizontal emittance dilution should be 

𝑘⊥ ≪
𝑈

𝑞𝑥0
√

𝜀𝑥

𝛾𝛽
 = 2.3×103 V/pC/m     (30) 



6. The kick factor necessary to avoid vertical emittance dilution should be 

𝑘⊥ ≪
𝑈

𝑞𝑦0
√

𝜀𝑦

𝛾𝛽
 = 1.7×102 V/pC/m     (31) 

Typically for the cavities operating at 1-5 GHz the kick factor has the order of < 100 V/pC/m. 

It means that single-bunch effects are not a problem. 

 

VI. Example – QMIR 
 

For QMIR cavity scaled from 2.8 GHz to 2.6 GHz one has: 

Operation mode    (
𝑟⊥

𝑄
) = 1040 Ohm (2.6 GHz) 

Maximal dipole horizontal HOM  (
𝑟⊥

𝑄
) = 10 Ohm (2.5 GHz); Q < 1×105. 

Maximal dipole vertical HOM   (
𝑟⊥

𝑄
) = 10 Ohm (4 GHz); Q < 1×104. 

Horizontal kick factor    𝑘⊥ = 400 V/pC/m – no problem 

Vertical kick factor    𝑘⊥ = 100 V/pC/m – no problem 

 

1. We have requirement for horizontal shunt impedance: 

𝑟⊥𝑓𝐻𝑂𝑀
2 ≪  9.6 GOhm∙GHz2 

or 𝑟⊥ << 1.5 GOhm. It means that for this mode Q << 1.5×108. QMIR has Q < 1×105.  

Ergo: a QMIR cavity well satisfies the horizontal HOM impedance requirement. 

2. We have requirement for vertical shunt impedance: 

𝑟⊥𝑓𝐻𝑂𝑀
2 ≪  0.7 GOhm∙GHz2 

or 𝑟⊥ << 600 MOhm. It means that for this mode Q << 4.4×106. QMIR has Q < 1×104. 

Ergo: a QMIR cavity well satisfies the vertical HOM impedance requirement. 

3. Power requirements 

Suppose that the maximal cavity detune is Δ𝑓 = 1000 Hz (LFD, microphonics). In this case the 

required power will be determined by this detune if the beam offset is  

𝑥0 <
2Δ𝜔

𝜔0
∙

𝑈0

𝐼𝑝𝑘0(
𝑟⊥
𝑄

)
 = 2 mm.       (32) 

It means that in this limit, e.g., when the beam offset is 1 mm, the cavity required power is 

practically independent of the beam current, and the average power is  

𝑃 = 2
𝑈0

2Δ𝑓/𝑓

(
𝑟⊥
𝑄

)
 = 0.61 kW + overhead of 100% = 1.2 kW.   (33) 

The average power is 43 W (as the duty factor is 0.36%). 



The cavity loaded Q is  

𝑄 =1.3×106,                                        (34) 

and the cavity bandwidth δf is 

 

𝛿𝑓 = 2 kHz                                        (35) 

 

4. The cavity detune for operation without crabbing 

According to (23) and (24), for QMIR cavity one has 

 

𝑚 ≫
𝜋𝑓𝑅𝐹𝑥0𝐼0(

𝑟⊥
𝑄

)𝑄

𝑐𝑈√
𝜀𝑥

𝛾𝛽𝑥

= 29                                                                        (36) 

and, therefore,  

 

|𝑓𝑅𝐹 − 𝑓|>> 58 kHz                                                                        (37)  

 

Therefore, in order to put the cavity out of operation, one should detune the cavity by >> 58 

kHz.  ~200 kHz should be OK.  It gives the requirement for the tuner for QMIR cavity. 

 

 

VII. Summary 

 
From physics point of view, it makes sense to put the following parameters into specification for 

the ILC crab cavity: 

1. Horizontal kick voltage 𝑈0𝑓𝑅𝐹 = 2.4 MV∙GHz 

2. Requirement for horizontal HOM impedance 𝑟⊥𝑓𝐻𝑂𝑀
2 ≪

𝑈𝑐2

(2𝜋)2𝜎𝑧𝑥0𝐼𝑝
√

𝜀𝑥

𝛾𝛽𝑥
  = 9.6 GOhm∙GHz2   

3. Requirement for vertical HOM impedance 𝑟⊥𝑓𝐻𝑂𝑀
2 ≪

𝑈𝑐2

(2𝜋)2𝜎𝑧𝑦0𝐼𝑝
√

𝜀𝑦

𝛾𝛽𝑦
  =0.7 GOhm∙GHz2. 

4. The cavity kick factors – vertical and horizontal for ILC are not critical 

5. Input pulse RF power depends on the cavity design, may be specified < 2 kW pulsed 

6. Beam vertical and horizontal  ffset with respect to the cavity axis < 1 mm 

7. HOM electric axis offset with respect to the cavity axis < 1 mm 

 

 

 

 



Appendix I 

 

According to Wilson’s theorem for a dipole mode (see Appendix II), the kick voltage 𝑈𝑘𝑖𝑐𝑘 induced by a 

short bunch having charge q having offset 𝑥0 is 

𝑼𝑘𝑖𝑐𝑘 =
𝑖

2
𝑐𝑞𝑘0

2𝑥0 (
𝑟⊥

𝑄
) =  

𝑖

2
𝑞𝜔0𝑘0𝑥0 (

𝑟⊥

𝑄
)     (AI.1) 

For a bunch train containing the similar bunch having the same offset one has on resonance, i.e., when the 

bunch separation T is multiple of the RF period: 

𝑼𝑘𝑖𝑐𝑘 =
𝑖

2
𝑐𝑞𝑘0

2𝑥0 (
𝑟⊥

𝑄
) =  

𝑖

2
𝑞𝜔0𝑘0𝑥0 (

𝑟⊥

𝑄
)∑ 𝑒−𝑗𝑇/𝜏𝑛

𝑗=0 = 
𝑖

2
𝑞𝜔0𝑘0𝑥0 (

𝑟⊥

𝑄
)

1−𝑒−𝑇𝑛/𝜏

1−𝑒−𝑇/𝜏  , (AI.2) 

 

where 𝜏 =
2𝑄

𝜔
 is the time constant. Considering that the pulse width 𝑡𝑝 = 𝑛𝑇 and that 𝑇 ≪ 𝜏 one has for the 

kick amplitude 𝑈𝑘𝑖𝑐𝑘 = |𝑼𝑘𝑖𝑐𝑘|: 

𝑈𝑘𝑖𝑐𝑘 = 𝑘0𝑥0𝑟⊥𝐼𝑝(1 − 𝑒−𝑡𝑝/𝜏),      (AI.3) 

where 𝐼𝑝 = 𝑞/𝑇 is the pulsed beam current. 

For periodic pulses one has 

𝑈𝑘𝑖𝑐𝑘 = 𝑘0𝑥0𝑟⊥𝐼𝑝(1 − 𝑒−𝑡𝑝/𝜏)∑ 𝑒−𝑗/(𝑓𝑟𝜏)∞
𝑗=0 = 𝑘0𝑥0𝑟⊥𝐼𝑝

1−𝑒−𝑡𝑝/𝜏

1−𝑒−1/(𝑓𝑟𝜏) ,  (AI.4) 

where 𝑓𝑟 is the pulse repetition rate. 

 

 

Appendix II 
 
Let us consider the dipole mode excitation by a single short ultra-relativistic bunch. According to the 

Wilson’s theorem, a short bunch “sees” a half of the voltage it excites in a cavity. Thus, from the energy 

conservation one can find that 

1

2
𝑈𝑞 = 𝑊,         (A.II.1) 

where q is the bunch charge, U is the voltage induced in the cavity, and W is the RF energy stored in the 

cavity after the bunch left it. Consider the bunch moving parallel to the cavity axis with an offset x0. In this 

case, 

𝑈 = 𝐴|∫ Ε𝑧(𝑥0, 0, 𝑧)𝑒𝑖𝑘0𝑧𝑑𝑧
∞

−∞
|      (A.II.2) 

and 

𝑊 =
𝜀0

2
∫|Ε⃗ |

2
𝑑𝑉.        (A.II.3) 

A is the eigenmode amplitude. From (A.II.1-A.II.3) one finds 

1

𝐴
= 𝑞

|∫ Ε𝑧(𝑥0,0,𝑧)𝑒𝑖𝑘0𝑧𝑑𝑧
∞

−∞
|

𝜀0 ∫|Ε⃗⃗ |
2
𝑑𝑉

       (AII.4) 

and the voltage along the arbitrary line parallel to the axis and having offset x is 



𝑈(𝑥, 0, 𝑧) = 𝑞
|∫ Ε𝑧(𝑥, 0, 𝑧)𝑒𝑖𝑘0𝑧𝑑𝑧

∞

−∞
||∫ Ε𝑧(𝑥0, 0, 𝑧)𝑒𝑖𝑘0𝑧𝑑𝑧

∞

−∞
|

𝜀0 ∫|Ε⃗ |
2
𝑑𝑉

≈ 

≈
𝑞𝑥𝑥0|∫ (

𝜕Ε𝑧(𝑥,0,𝑧) 

𝜕𝑥
)
𝑥=0

𝑒𝑖𝑘0𝑧𝑑𝑧
∞

−∞
|
2

𝜀0 ∫|Ε⃗⃗ |
2
𝑑𝑉

 = 
1

2
𝑥𝑥0𝜔0 (

𝑟||

𝑄
)
1
,    (AII.5) 

because 
𝜕Ε𝑧(𝑥,0,𝑧)

𝜕𝑥
 in paraxial area does not depend on x for a dipole mode. From the Panofsky-Wenzel 

theorem one has 

𝑼𝑘𝑖𝑐𝑘 =
𝑖𝑐

𝜔0

𝜕𝑈

𝜕𝑥
=

𝑖

2
𝑐𝑞𝑥0 (

𝑟||

𝑄
)
1
.      (AII.6) 

Considering that  

 (
𝑟⊥

𝑄
)
1

≡ (
𝑟||

𝑄
)
1
×

1

(𝑘0)
2        (AII.7) 

one has 

𝑼𝑘𝑖𝑐𝑘 =
𝑖

2
𝑐𝑞𝑘0

2𝑥0 (
𝑟⊥

𝑄
) =  

𝑖

2
𝑞𝜔0𝑘0𝑥0 (

𝑟⊥

𝑄
) .    (AII.8) 

 

 

Appendix III 

 

Let us estimate the RF power necessary to maintain the kick amplitude  𝑈0 in a crab cavity with an operating 

dipole mode loaded by the beam having offset 𝑥0 with respect to the operating mode electric axis. If the 

beam current is 𝐼𝑝, the input power P is 

𝑃 =
𝑉𝑐

2

4𝑄(
𝑅

𝑄
)

1+𝛽

𝛽
[(1 +

𝐼𝑝(
𝑅

𝑄
)𝑄

𝑉𝑐
)

2

+ (2𝑄
∆𝜔

𝜔𝑅𝐹
)
2
],    (AIII.1) 

where 𝑉𝑐 is the energy gain of the beam in eV, 𝛽 is the coupling, 𝑄 is the loaded quality factor, 
𝑅

𝑄
 is the 

cavity impedance along the line parallel to the axis having offset 𝑥0,  
𝑅

𝑄
=

𝑉𝑐
2

𝜔𝑅𝐹𝑊
 , W is the stored energy, 

𝜔𝑅𝐹 is it’s resonant frequency, ∆𝜔 = 𝜔𝑅𝐹 − 𝜔, 𝜔 is the harmonic of the bunch repetition frequency close 

to the cavity resonance. Note that we consider the worst case, when 𝑉𝑐 is in phase with the beam current, 

while the kick is shifted by 90°.  

According to the Panofsky-Wenzel theorem, the kick voltage is 

𝑼0 =
𝑖𝑐

𝜔𝑅𝐹

𝜕𝑉𝑐

𝜕𝑥
≈

𝑖𝑐

𝜔𝑅𝐹

𝑉𝑐

𝑥0
,        (AIII.2) 

and the kick amplitude is  

𝑈0 =
𝑐

𝜔𝑅𝐹

𝑉𝑐

𝑥0
=

𝑉𝑐

𝑘0𝑥0
,        (AIII.3) 

where 𝑘0 = 𝜔𝑅𝐹/c is the wave number. Therefore, 

𝑉𝑐  = 𝑈0𝑘0𝑥0        (AIII.4) 

On the other hand,  



𝑅

𝑄
=

𝑉𝑐
2

𝜔𝑅𝐹𝑊
=

𝑈0
2(𝑘0𝑥0)

2

𝜔𝑅𝐹𝑊
= (

𝑟⊥

𝑄
) (𝑘0𝑥0)

2.     (AIII.5) 

Substituting expressions for 𝑉𝑐 and 
𝑅

𝑄
 to the formula for the power above, one has 

𝑃 =
𝑈0

2

4𝑄(
𝑟⊥
𝑄

)

1+𝛽

𝛽
[(1 +

𝐼𝑝𝑄(
𝑟⊥
𝑄

)𝑘0𝑥0

𝑈0
)

2

+ (
2𝑄Δ𝜔

𝜔0
)
2
].   (AIII.6) 

The power P is minimal for the coupling 

𝛽𝑜𝑝𝑡 = [(1 +
𝐼𝑝𝑄0(

𝑟⊥
𝑄

)𝑘0𝑥0

𝑈0
)

2

+ (
2𝑄0Δ𝜔

𝜔0
)
2
]

1/2

,    (AIII.7) 

Considering that unloaded quality factor 𝑄0 = 𝑄(1 + 𝛽), one has for 𝛽 ≫ 1 

𝑃 ≈
𝑈0

2

4𝑄(
𝑟⊥
𝑄

)
[(1 +

𝐼𝑝𝑄(
𝑟⊥
𝑄

)𝑘0𝑥0

𝑈0
)

2

+ (
2𝑄Δ𝜔

𝜔0
)
2
]    (AIII.8) 

and  

𝑄𝑜𝑝𝑡 = [(
1

𝑄0
+

𝐼𝑝(
𝑟⊥
𝑄

)𝑘0𝑥0

𝑈0
)

2

+ (
2Δ𝜔

𝜔0
)
2
]

−1/2

.    (AIII.9) 


