

Status of the long-lived particles reconstruction study at the ILD

Jan Klamka, A.F. Żarnecki University of Warsaw

Long-lived particle signatures

What do we need for tracks that <u>do not</u> **originate from / point to** the IP:

- Efficient hit/segment finding
- Good track reconstruction
- Secondary vertex finding
- Particle ID

All can be challenging for tracks with small momentum

Framework and signature

This talk:

- Track reconstruction and vertex finding
- Events with **displaced vertices**

As a challenging case (small boost) we considered:

 \rightarrow (tuned) Inert Doublet Model sample with small mass splitting, $Z^* \rightarrow \mu \mu$

First limitations

Tracking efficiency strongly suppressed by default cuts d0, z0 < 500 mm in the *FullLDCTracking_MarlinTrk* processor — simply remove (or loosen) the cut

Further problems

Tracks often reconstructed in the wrong direction (resulting in the opposite charge!)

Px Py Pz MC: 0.113 -0.339 0.061 Reco: -0.103 0.344 -0.062

Switch direction in first (last) hit if Pz does not point into Z coordinate of the last (first) hit

Efficiency improvement by ~10%

6 mm

Fig. from C. Ligtenberg PhD thesis

Virtual volumes in the TPC

Particle travelling alongside the boundaries generates no hits

Further problems – missing hits

TPC SimTrackerHits

Long distance between first hit and true vertex leads to wrong track parameters!

30 March 2022

Jan Klamka, Status of the LLP reconstruction study @ ILD

Further problems – split tracks

This track was reconstructed as two separate ones, with very distant reference points

30 March 2022

Jan Klamka, Status of the LLP reconstruction study @ ILD

Tracking efficiency

Take only LLP decays inside the TPC

Track state in the first or the last hit (for now take one closer to the true vertex)

In matching to MC require:

- <u>Angular separation < 0.2</u> between true and reco. direction
- Good charge sign

With fixes from slides 4-5 efficiency:

$$\sim 75\% (\Delta m_{AH} = 1 \,\text{GeV})$$

 $\sim 85\% (\Delta m_{AH} = 5 \,\text{GeV})$

Efficiency distributions

- Good performance for the high pT, but no consistent dependence for different mass splittings
- Low efficiency for the forward tracks; small dip in the central region
 - \rightarrow <u>curlers at very high angles</u> (perpendicular) and <u>LLP decays next to the outer TPC wall</u>

30 March 2022

True 3D angle between LLP and track vectors

Track reconstruction efficiency

True azimuthal angle difference between LLP and track

- High efficiency for the small angles between track and LLP when tracks point into the IP
- For higher boost, more tracks at small angles and better overall efficiency
- At large decay angles missing hits problem more frequent

30 March 2022

Vertex finding

Approach as in the V0Finder:

- Consider tracks in pairs
- Calculate distance between helices (*getDistanceToHelix* method from MarlinUtil)
- For now no additional cuts 🖂 significant background

In the matching consider decays inside TPC and require:

• Distance between true and reco. vtx < 30 mm

<u>Total efficiency:</u> ~ 48% ($\Delta m_{AH} = 1 \,\text{GeV}$) ~ 49% ($\Delta m_{AH} = 5 \,\text{GeV}$)

10

Vertex finding efficiency

 $\Delta m_{AH} = 5 \,\mathrm{GeV}$

Vertex reconstruction efficiency

 $\Delta m_{AH} = 1 \,\mathrm{GeV}$

Vertex reconstruction efficiency

- Small dependence on the vertex position in TPC
- Small dependence on the mass splitting

30 March 2022

- Efficiency limited for default reconstruction settings
- Large improvement can still be achieved

Conclusions

- Events with **displaced vertices**, **small mass splitting** and **low-momenta products** studied
- The main limitations in the track reconstruction identified
 - \rightarrow missing hits due to TPC geometry problematic
- First look into vertex finding
 - \rightarrow partly limited by track reconstruction, but must be further understood
 - \rightarrow work in progress

Open questions:

- Do we accept this and proceed?
- Should the tracking issues be fixed first?