

Central Tracker Based on TPC for the Future Machines

Serguei GANJOUR

CEA-Saclay/IRFU, Gif-sur-Yvette, France

- Possible High Energy Frontier Machines
- ☞ Next generation linear collider in Japan

➠ International Linear Collider-ILC: $\mathrm{e}^{\mathrm{+}}\mathrm{e}^{\mathrm{-}}$ collisions up to 1 TeV

- \sqrt{w} Post-LHC accelerator projects at $CERN$
	- ➠ Future Circular Collider-FCC: FCC-hh (100 TeV) , FCC- $e^+e^ (350 \text{ GeV})$, possibly ep
	- ➠ Compact LInear Collider-CLIC: $\mathrm{e^{+}e^{-}}$ collisions up to 3 TeV
- Circular Collider project in China

➠ Circular Electron Positron Collider-CEPC: $CEPC e⁺e⁻$ (250 GeV), SppC pp collider (100 TeV)

Extensive R&D program for TPC (LCTPC) is advanced for ILC aimed to demonstrate its feasibility

- A Time Projection Chamber (TPC) is a detector consisting of a cylindrical gas chamber and a position sensitive readout endcaps
- ☞ The TPC acts as a 3D camera taking a snapshot of the passing particle
- ☞ Transverse and Longitudinal resolutions are major characteristics of the TPC
	- \mathbb{I} **NY** position: charged particles ionize the gas, a longitudinal electric field causes ionization $\rm e^-$ to drift towards endcap where they are detected (transverse resolution)
	- \blacksquare \blacktriangleright Z position: measure time between ionization and detection multiply by drift velocity (longitudinal resolution)

☞ International Linear Collider (ILC) project in Japan:

- ➠ energy range (baseline design): 250- 500 GeV (upgradeable to 1 TeV)
- **ING ILC** is planned with two experiments
- **INO TPC** is the central tracker for International Large Detector (ILD)

☞ ILD components:

- **IIIIIII** vertex detector
- **IIIII•** few layers of silicon tracker
- ➠ gaseous TPC
- ➠ ECAL/HCAL/FCAL
- \blacksquare superconducting coil (3.5 T)
- **IIII+** muon chambers in iron yoke

☞ ILD requirements:

- ➠ momentum resolution: $\delta (1/p_{\rm T}) \leq 2 \times 10^{-5} {\rm GeV^{-1}}$
- **impact parameters:** σ (r ϕ) $\leq 5 \mu$ m
- ➠ jet energy resolution: $\sigma_{\rm E}/\rm E \sim 3 - 4\%$

S. Ganjour R&D with Prototypes of TPC 4

$$
\frac{\sigma(\mathsf{p}_{\mathsf{T}})}{\mathsf{p}_{\mathsf{T}}} = \sqrt{\frac{720}{\mathsf{N}+4}}(\frac{\sigma_{\mathsf{x}}\mathsf{p}_{\mathsf{T}}}{0.3\mathsf{B}\mathsf{L}^2})
$$

 $E \cong TPC$ point resolution is $x10$ worse than Si

- \blacksquare would need \times 100 more points
- ➠ not always practical
- ➠ larger tracking volume
- ➠ include 2 inner Si layers (SIT) and 1 outer Si layer (SET, ETD)

☞ ILC flagship measurement

- ➠ recoil mass e ⁺e [−] → Z(ll)X
- **•••** driven by both beam spread (σ_B) and momentum resolution (σ_D)
	- $\rightarrow \sigma_B = 400$ MeV from TDR
	- $\rightarrow \sigma_{\rm D} = 300$ MeV at $R_{\rm out} = 1.8$ m

$$
\rightarrow \sigma_{\rm D} = 400~{\rm MeV}~{\rm at}~{\rm R}_{\rm out} = 1.4~{\rm m}
$$

TPC is the central tracker for International Large Detector (ILD)

- **Large number of 3D points (** \sim **200)**
	- ➠ continuous tracking
- ☞ Particle identification
	- \mathbf{E}/dx measurement
- ☞ Low material budget in front of the calorimeters (Particle Flow Algorithm)
	- \blacksquare barrel: $\sim 5\%$ X₀
	- Home endplates: $\sim 25\% \mathrm{X}_{0}$

☞ Two gas amplification options:

- ➠ Gas Electron Multiplier (GEM)
- ➠ MicroMegas (MM)
	- **→** pad-based charge dispersion readout
	- \rightarrow direct readout by the TimePix chip

☞ TPC Requirements in 3.5 T

- ➠ Momentum resolution:
	- $\rightarrow \delta(1/p_T) \leq 9 \times 10^{-5} \text{GeV}^{-1}$
- ➠ Single hit resolution:
	- $\rightarrow \sigma(r\phi) \leq 100 \mu m$ (overall)
	- $\rightarrow \sigma(Z) \simeq 400 \mu m$ at z=0
- ➠ Tracking efficiency:
	- \rightarrow 97% for $p_T \geq 1 \text{GeV}$
- \blacktriangleright dE/dx resolution: 5%

■ Pad size limits transverse resolution

➠ use resistive anode to spread charge

☞ Charge density function of time dependent charge dispersion on 2D continuous RC network:

$$
\rho(\text{r},\text{t})=\tfrac{\text{RC}}{2\text{t}}\exp[-\tfrac{-\text{r}^2\text{RC}}{4\text{t}}]
$$

- R- surface resistivity
- C- capacitance/unit area

Relative fraction of charge seen by pads fitted by Pad Response Function (PRF)

MM: T2K readout concept: 72-channel AFTER chip (12-bit)

drift volume

Triple GEM Modules Double GEM Modules

- ☞ GEM: modified ALTRO readout
	- ➠ 16-channel ALTRO chip (10-bit)

Prototype readout modules operate in a 1 T magnetic field

☞ Fit data with:

$$
\sigma(\mathrm{z})=\sqrt{\sigma_0^2+\tfrac{\mathrm{D}_\bot^2}{\mathrm{N}_\mathrm{eff}}\mathrm{z}},\;\sigma_0^2=\mathrm{b}^2/\mathrm{N}_\mathrm{eff}
$$

- $\blacksquare \rightarrow \sigma_0$ the resolution at $z = 0$, N_{eff} - the effective number of electrons
- **■■** Magboltz calculations of D_{\perp} at about 3% precision

Extrapolation to a magnetic field of 3.5 T and 2.35 m drift length yield to a maximum $100 \mu m$ over the full drift length (tightly controlled gas quality and minimal impurities)

Measuring dE/dx resulution with LP test beam data and extrapolating to ILD TPC

- ☞ Test arbitrary track lengths by randomly combining hits from several real tracks to a pseudo track in test beam setup
	- \blacksquare allows extrapolating dE/dx resolution to the ILD TPC tracks of 130 cm
- ¤ Estimated dE/dx resolution with 70% truncated mean for ILD TPC
	- \blacksquare GEM: $\sigma_{\rm dE/dx} = 4.1\%$ for 220 hits \rightarrow no degradation due to gating GEM \rightarrow good agreement with simulation \blacksquare MM: $\sigma_{\rm dE/dx} = 4.5\%$ for 170 hits
		- → no significant degradation due to resistive foil

Non-uniform E-field near module boundaries induces ExB effects

- Track distortions in standard scheme
	- \blacksquare reach about 0.5 mm at boundaries

➔ worth to minimize at design level

- ➠ accounted as systematic residual offsets
- **IIIII** determined on a row-by-row basis
- $\blacksquare\blacktriangleright$ correct residuals to zero at $\text{about}~20\mu\text{m}$
- ☞ Good agreement with simulations
	- **IND E** and B field inhomogeneity at module boundaries and near the edges of the magnet

Refine the simulations and work on possible countermeasures are ongoing

1700

 $z = 30$ mm

 $z = 100$ mm $z = 500$ mm

1700

S. Ganjour R&D with Prototypes of TPC 12

Ion Space Charge can deteriorate the position resolution of TPC

- ☞ Primary ions yield distortions in the E-field which result to $O(\leq 1 \mu m)$ track distortions
- ☞ Secondary ions yield distortions from backflowing ions generated in the gas-amplification region:
	- \blacksquare 60 μ m for IBFxGain=3 for the case of 2 ion disks

S. Ganjour R&D with Prototypes of TPC 13

Gating: open GEM to stop ions while keeping transparency for electrons

☞ A large-aperture gate-GEM with honeycomb-shaped holes

The ions must be stopped before penetrating too much the drift region The device to stop them must be transparent to electrons

Electron transmission rate as a function of GEM voltage measured with Fe^{55}

Measurement using ⁵⁵Fe

We measured the signals with the normal and reversed drift fields for each ΔV .

Extrapolation to 3.5 T shows acceptable transmission for electrons (80%) Simulation shows that ion stopping power better than 10^{-4} at 10 V reversed biases

The results are consistent with no more degradation than expected (10%) Gate-GEM seems to be a solution for the gating at ILC

☞ Main features:

- \blacksquare E-range : 90-350 $\rm GeV$
- ➠ maximum SR power drives the machine design
- ➠ lumi increases at low E
- ➠ continious bunch structure
- \blacksquare 2-rings concept allows multi-bunch operation at Z-pole
- ☞ High Luminosity at Z-pole is critical for the TPC performance
	- ➠ not applicable for FCCee
	- **IIII** baseline option for CEPC

Ion back flow is crucial since gating is not possible at circular colliders

- ☞ Charge rate is driven by
	- $Z \rightarrow$ hadrons events at low energy
	- \blacksquare 19.2 visible charged tracks
	- ⊪→ $16.8\,$ kHz at $\rm L = 3\cdot 10^{35} s^{-1}\, cm^{-2}$
	- \Box , $\gamma\gamma \rightarrow$ hadrons and machine background are possibly negligible (in contrast to ILC)

 $□$ Design $B=3.5$ T to meet spatial resolution

- \lim R_{min} = 40 cm, R_{max} = 190 cm, Z_{max} = 225 cm
- \sqrt{w} Simulate $Z \rightarrow$ hadrons with PHYTHIA
	- **factorized approach for** $r \ge 0.4$ m: $\rho(\mathbf{r}, \mathbf{z}) = \rho'(\mathbf{r})\rho''(\mathbf{z})$
		- \blacksquare charge ionization is 40 ions/cm
- ☞ Determine charged density due to secondary backflowing ions

Secondary ions yield distortions of about 20 μ m for IBFxGain=1 for the case of continious charge density along z axis and corresponds to $L = 3 \cdot 10^{35} s^{-2} cm^{-1}$ at 3.5 T magnetic field

Possible Suppression of IBF

Combined MM+GEM module at IHEP Currently IBF $\sim 10^{-3}$ is feasible, needs more R&D to go beyond

- ☞ A lot of experience has been gathered in building and operating MPGD TPC panels within the LCTPC collaboration
- ☞ The characteristics of the MPGD studied in detail, results indicate that it meets ILC requirements
	- ➠ The R&D work is in a phase of engineering toward the final design of a TPC for the ILD detector

■ Ion back flow is the most critical issue for the TPC at circular colliders

- **rate is driven by Z** \rightarrow hadrons at low energy
- ➠ gating is not possible due to continuous bunch structure
- ☞ Possible distortions due to space charge effects are large enough
	- ➠ extremely demanding on luminosity and magnetic field
	- HINT ion suppression of about 10^{-4} is required
	- **IIII** dedicated calibration scheme with laser is possibly needed

Extensive R&D for ILC TPC is active research area of the LCTPC Collaboration

Total of 12 countries from 25 institutions members + several observer institutes

☞ Technology choise for TPC readout: Micro Pattern Gas Detector (MPGD)

- ➠ no ExB effect, better ageing, low ionback drift
- ➠ easy to manufacture, MPGD more robust mechanically than wires
- ☞ Resistive Micromegas (MM)
	- ➠ MICROMEsh GAseous Structure
	- <u></u> and metalic micromesh (pitch \sim 50 μ m)
	- \blacksquare supported by 50 μ m pillars
	- **IIIII** multiplication between anode and mesh (high gain)

峰 GEM

- **WED** Gas Electron Multiplier
- ➠ doublesided copper clad Kapton
- **IIIIA** multiplication takes place in holes,
- **IIII→** 2-3 layers are needed to obtain high gain

Discharge probability can be mastered (use of resistive coatings, several step amplification, segmentation)

The test beam facility at DESY provides a 6 GeV electron beam

- ☞ Two options for endplate readout with pads:
	- $\textsf{m} \rightarrow \textsf{GEM} \colon 1.2 \textsf{x} 5.8 \, \, \textsf{mm}^2$ pads
	- $\textsf{m} \rightarrow \textsf{MM}$: 3x7 \textsf{mm}^2 pads

☞ Alternative:

pixel readout with pixel size \sim 55x55 μ m² (newest)

Consists of a field cage equipped with an endplate with 7 windows to receive up to 7 fully equipped identical modules

LP readout modules operate in a 1 T magnetic field

Different layouts are considered for ILD: 4-wheel and 8-wheel scheme

☞ Micromegas on a pixelchip

- **IIII** resistive protection layer (4-8 μ m) on top of chip
- ➠ insulating pillars between grid & pixelchip
- ➠ one hole above each pixel
- ➠ amplification directly above the pixelchip
- ➠ very high single point resolution

Low threshold level \sim 500 e⁻ (90 e⁻ ENC)

Timepix: 256 x 256 pixels of size $55 \times 55 \mu m^2$

Extrapolate to B=3.5T

Micromegas 3x7mm² pads and GEM 1.2x5.8mm² pads