

Central Tracker Based on TPC for the Future Machines

Serguei GANJOUR

CEA-Saclay/IRFU, Gif-sur-Yvette, France

- **Possible High Energy Frontier Machines**

International Linear Collider-ILC: e^+e^- collisions up to 1 TeV

- ${\tt I}{\tt S}{\tt S}$ Post-LHC accelerator projects at ${\bf CERN}$
 - ➡ Future Circular Collider-FCC: FCC-hh (100 TeV), FCC-e⁺e⁻ (350 GeV), possibly ep
 - Compact LInear Collider-CLIC: e⁺e⁻ collisions up to 3 TeV
- realized Collider project in China

Circular Electron Positron Collider-CEPC: CEPC e⁺e⁻ (250 GeV), SppC pp collider (100 TeV)

Extensive R&D program for TPC (LCTPC) is advanced for ILC aimed to demonstrate its feasibility

- A Time Projection Chamber (TPC) is a detector consisting of a cylindrical gas chamber and a position sensitive readout endcaps
- Image: The TPC acts as a 3D camera taking a snapshot of the passing particle
- Image: Second Secon
 - XY position: charged particles ionize the gas, a longitudinal electric field causes ionization e⁻ to drift towards endcap where they are detected (transverse resolution)
 - Z position: measure time between ionization and detection multiply by drift velocity (longitudinal resolution)

International Linear Collider (ILC) project in Japan:

- energy range (baseline design): 250-500 GeV (upgradeable to 1 TeV)
- ILC is planned with two experiments
- TPC is the central tracker for International Large Detector (ILD)

ILD components:

- wertex detector
- few layers of silicon tracker
- gaseous TPC
- **ECAL/HCAL/FCAL**
- superconducting coil (3.5 T)
- muon chambers in iron yoke

ILD requirements:

- momentum resolution: $\delta(1/{
 m p_T}) \leq 2 imes 10^{-5} {
 m GeV^{-1}}$
- \blacksquare impact parameters: $\sigma(\mathbf{r}\phi) \leq 5\mu\mathbf{m}$
- ⇒ jet energy resolution: $\sigma_{\rm E}/{\rm E} \sim 3-4\%$

S.Ganjour

R&D with Prototypes of TPC

$$rac{\sigma(\mathbf{p_T})}{\mathbf{p_T}} = \sqrt{rac{720}{\mathsf{N}+4}}(rac{\sigma_{\mathsf{x}}\mathbf{p_T}}{0.3\mathsf{BL}^2})$$

 $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ TPC point resolution is x10 worse than Si

- would need x100 more points
- met always practical
- Iarger tracking volume
- include 2 inner Si layers (SIT) and 1 outer Si layer (SET, ETD)

ILC flagship measurement ™

- ``` recoil mass $\mathrm{e^+e^-}
 ightarrow \mathrm{Z(ll)X}$
- \blacksquare driven by both beam spread $(\sigma_{\rm B})$ and momentum resolution $(\sigma_{\rm D})$
 - → $\sigma_{\rm B} = 400~{
 m MeV}$ from TDR
 - $ightarrow \sigma_{
 m D} = 300~{
 m MeV}$ at ${
 m R}_{
 m out} = 1.8~{
 m m}$

→
$$\sigma_{\mathsf{D}} = 400$$
 MeV at $\mathsf{R}_{\mathsf{out}} = 1.4$ m

TPC is the central tracker for International Large Detector (ILD)

- \blacksquare Large number of 3D points (\sim 200)
 - continuous tracking
- Particle identification
 - \Rightarrow dE/dx measurement
- Low material budget in front of the calorimeters (Particle Flow Algorithm)
 - \blacksquare barrel: $\sim 5\% X_0$
 - ${}^{\scriptstyle{\scriptstyle{|||}||}}$ endplates: $\sim 25\% X_0$
- \bowtie Two gas amplification options:
 - ➡ Gas Electron Multiplier (GEM)
 - MicroMegas (MM)
 - \rightarrow pad-based charge dispersion readout
 - \rightarrow direct readout by the TimePix chip

INFERT TPC Requirements in 3.5 T

- **Momentum resolution:**
 - $\rightarrow \delta(1/p_{\rm T}) \le 9 \times 10^{-5} {\rm GeV^{-1}}$
- ➡ Single hit resolution:
 - → $\sigma(\mathbf{r}\phi) \le 100 \mu \mathbf{m}$ (overall)
 - → $\sigma(Z) \simeq 400 \mu m$ at z=0
- **Tracking efficiency:**
 - ightarrow 97% for $p_T \geq 1 GeV$
- \Rightarrow dE/dx resolution: 5%

Pad size limits transverse resolution

use resistive anode to spread charge

Charge density function of time dependent charge dispersion on 2D continuous RC network:

$$ho(\mathrm{r,t}) = rac{\mathrm{RC}}{2\mathrm{t}} \exp[-rac{-\mathrm{r}^2\mathrm{RC}}{4\mathrm{t}}]$$

- R- surface resistivity
- C- capacitance/unit area

Relative fraction of charge seen by pads fitted by Pad Response Function (PRF)

MM: T2K readout concept: 72-channel AFTER chip (12-bit)

Triple GEM Modules

drift volume

Double GEM Modules

- IN GEM: modified ALTRO readout
 - 16-channel ALTRO chip (10-bit)

Prototype readout modules operate in a 1 T magnetic field

☞ Fit data with:

$$\sigma(\mathrm{z}) = \sqrt{\sigma_0^2 + rac{\mathrm{D}_\perp^2}{\mathrm{N}_{\mathrm{eff}}} \mathrm{z}}, \; \sigma_0^2 = \mathrm{b}^2/\mathrm{N}_{\mathrm{eff}}$$

- σ_0 the resolution at z = 0, N_{eff} - the effective number of electrons
- Magboltz calculations of D_⊥ at about 3% precision

Extrapolation to a magnetic field of 3.5 Tand 2.35 m drift length yield to a maximum $100 \ \mu\text{m}$ over the full drift length (tightly controlled gas quality and minimal impurities)

dE/dx Resolution

Measuring dE/dx resulution with LP test beam data and extrapolating to ILD TPC

- Test arbitrary track lengths by randomly combining hits from several real tracks to a pseudo track in test beam setup
 - allows extrapolating dE/dx resolution to the ILD TPC tracks of 130 cm
- - GEM: σ_{dE/dx} = 4.1% for 220 hits
 → no degradation due to gating GEM
 → good agreement with simulation
 MM: σ_{dE/dx} = 4.5% for 170 hits
 - → no significant degradation due to resistive foil

Non-uniform E-field near module boundaries induces ExB effects

- Track distortions in standard scheme
 - \blacksquare reach about 0.5 mm at boundaries

 \rightarrow worth to minimize at design level

- accounted as systematic residual offsets
- determined on a row-by-row basis
- \blacksquare correct residuals to zero at about $20 \mu {
 m m}$
- ${\tt I\!S\!S}$ Good agreement with simulations
 - E and B field inhomogeneity at module boundaries and near the edges of the magnet

Refine the simulations and work on possible countermeasures are ongoing

z = 30 mm

z = 100 mmz = 500 mm

1700

z = 30 mm

z = 100 mmz = 500 mm

1700

Ion Space Charge can deteriorate the position

resolution of TPC

- Primary ions yield distortions in the E-field which result to $O(\leq 1\mu m)$ track distortions
- Secondary ions yield distortions from backflowing ions generated in the gas-amplification region:
 - 60 μm for IBFxGain=3 for the case of 2 ion disks

S.Ganjour

R&D with Prototypes of TPC

Gating: open GEM to stop ions while keeping transparency for electrons

Real A large-aperture gate-GEM with honeycomb-shaped holes

The ions must be stopped before penetrating too much the drift region The device to stop them must be transparent to electrons

S.Ganjour

$\ensuremath{\mathsf{R\&D}}\xspace$ with Prototypes of TPC

Electron transmission rate as a function of GEM voltage measured with Fe^{55}

Measurement using ⁵⁵Fe

We measured the signals with the normal and reversed drift fields for each ΔV .

Extrapolation to 3.5 T shows acceptable transmission for electrons (80%) Simulation shows that ion stopping power better than 10⁻⁴ at 10 V reversed biases

The results are consistent with no more degradation than expected (10%) Gate-GEM seems to be a solution for the gating at ILC

I™ Main features:

- \blacksquare E-range : 90-350 GeV
- maximum SR power drives the machine design
- Iumi increases at low E
- continious bunch structure
- Parings concept allows multi-bunch operation at Z-pole
- High Luminosity atZ-pole is critical for theTPC performance
 - not applicable for FCCee
 - **baseline** option for CEPC

	FCCee-Z	FCCee-W	FCCee-H	CEPC-Z	CEPC-H
\sqrt{s} (GeV)	90	160	240	90	240
$L (10^{34} cm^{-2} s^{-1})$	230	32	8	17(32)	2.0
# bunches	16640	2000	393	10900	286
Total RF voltage (GV)	0.1	0.44	2.0	0.05	2.14
Bunch intensity (10^{11})	1.7	1.5	1.5	0.16	1.3
Lumi lifetime (min)	70	50	42		
SR Power (MW)	50	50	50	30	30

Ion back flow is crucial since gating is not possible at circular colliders

- I Charge rate is driven by
 - $Z \rightarrow hadrons \ events$ at low energy
 - \blacksquare 19.2 visible charged tracks
 - \blacksquare 16.8 kHz at $L = 3 \cdot 10^{35} s^{-1} cm^{-2}$
 - $\gamma \gamma \rightarrow hadrons$ and machine background are possibly negligible (in contrast to ILC)

${}^{\tiny \hbox{\tiny IMS}}$ Design $B{=}3.5~T$ to meet spatial resolution

- $\blacksquare R_{\rm min} = 40\,{\rm cm}$, $R_{\rm max} = 190\,{\rm cm}$, $Z_{\rm max} = 225\,{\rm cm}$
- ${\tt ISP}$ Simulate ${\rm Z} \rightarrow {\rm hadrons}$ with <code>PHYTHIA</code>
 - factorized approach for $r \ge 0.4m$: $\rho(r, z) = \rho'(r)\rho''(z)$
 - $^{\scriptsize \hbox{\tiny IMP}}$ charge ionization is 40~ions/cm
- Determine charged density due to secondary backflowing ions

Secondary ions yield distortions of about 20 μ m for IBFxGain=1 for the case of continious charge density along z axis and corresponds to L = $3 \cdot 10^{35}$ s⁻²cm⁻¹ at 3.5 T magnetic field

Possible Suppression of IBF

Combined MM+GEM module at IHEP Currently $IBF \sim 10^{-3}$ is feasible, needs more R&D to go beyond

- Image A lot of experience has been gathered in building and operating MPGD TPC panels within the LCTPC collaboration
- Image The characteristics of the MPGD studied in detail, results indicate that it meets ILC requirements
 - The R&D work is in a phase of engineering toward the final design of a TPC for the ILD detector

 $\ensuremath{\mathbb{R}}\xspace^{\ensuremath{\mathbb{R}}\xspace}$ Ion back flow is the most critical issue for the TPC at circular colliders

- $```` rate is driven by <math display="inline">Z \rightarrow hadrons$ at low energy
- gating is not possible due to continuous bunch structure
- $\ensuremath{\mathbb{R}}\xspace$ Possible distortions due to space charge effects are large enough
 - extremely demanding on luminosity and magnetic field
 - ion suppression of about 10^{-4} is required
 - dedicated calibration scheme with laser is possibly needed

Backup

Extensive R&D for ILC TPC is active research area of the LCTPC Collaboration

Total of 12 countries from 25 institutions members + several observer institutes

IS Technology choise for TPC readout: Micro Pattern Gas Detector (MPGD)

- m no ExB effect, better ageing, low ionback drift
- easy to manufacture, MPGD more robust mechanically than wires
- \mathbb{R} Resistive Micromegas (MM)
 - MICROMEsh GAseous Structure
 - metalic micromesh (pitch ${\sim}50~\mu{
 m m}$)
 - \blacksquare supported by 50 μm pillars
 - multiplication between anode and mesh (high gain)

R GEM

- Gas Electron Multiplier
- doublesided copper clad Kapton
- multiplication takes place in holes,
- 2-3 layers are needed to obtain high gain

Discharge probability can be mastered (use of resistive coatings, several step amplification, segmentation)

The test beam facility at DESY provides a 6 GeV electron beam

- Is Two options for endplate readout with pads:
 - \blacksquare GEM: 1.2x5.8 mm^2 pads
 - $\blacksquare MM: 3x7 \ mm^2$ pads

☞ Alternative:

pixel readout with pixel size ${\sim}55{\times}55~\mu{\rm m}^2$ (newest)

Consists of a field cage equipped with an endplate with 7 windows to receive up to 7 fully equipped identical modules

LP readout modules operate in a 1 T magnetic field

Different layouts are considered for ILD: 4-wheel and 8-wheel scheme

I™ Micromegas on a pixelchip

- merisitive protection layer (4-8 μm) on top of chip
- insulating pillars between grid & pixelchip
- me hole above each pixel
- amplification directly above the pixelchip
- wery high single point resolution

Low threshold level \sim 500 e⁻ (90 e⁻ ENC)

Timepix: 256 x 256 pixels of size $55 \times 55 \mu m^2$

Extrapolate to B=3.5T

Micromegas 3x7mm² pads and GEM 1.2x5.8mm² pads