

AFB studies at 500 GeV (update)

ILD Top/HF group meeting 08/04/22

A. Irles*, J. P. Márquez*

*Orsay/Tohoku/Valencia HQ@ILC Team AITANA group at IFIC-CSIC/UV

Recapitulation

- We presented the different cuts for the preselection of the signals (back-up slides).
- We studied the dependence of the A_{FB} (at Monte-Carlo level) for different K_{ISR} values:
 - $^{\circ}$ This showed that the cut in K_{reco} is safe.
 - We fixed a value of K_{ISR}=50 GeV. (back-up slides).
- We checked the b-tag and c-tag setting used at 250 GeV and applied it to this 500 GeV samples, and selected a cut for each (back-up slides).
- We were about to try a re-training of the tagging and compare the performance.
 - This presentation. *Work in progress*

Retraining procedure

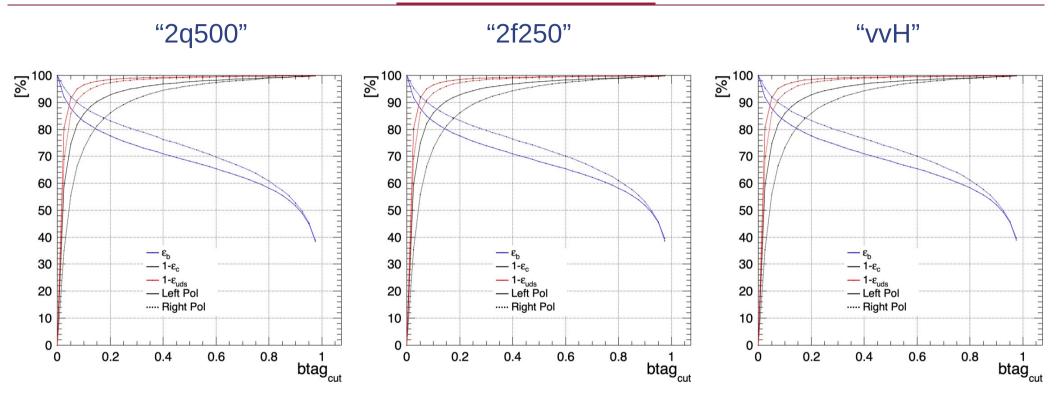
- Training algorithms:
 - TrackNtuple and TrackProb.C:
 - Prepare the data files to be used in flavor tagging.
 - Necessary with different geometry (different vertex detector configuration).
 - MakeNtuple:
 - Prepare training data.
 - Needs a "vertexing" file (output of TrackNtuple+TrackProb.C).
 - Train:
 - Run TMVA to train the flavor tagging BDT and produce the weights to b/c-tag our data.
 - Needs MakeNtuple output.

Retraining procedure

- Changing vtx file is non necessary but we tried 3 options to check:
 - 2f250, already available.
 - VvH250, already available.
 - 2q500, obtained with TrackNtuple.
- We use 2q500 samples (qqbar production at 500 GeV) for e⁻Le⁺R and e⁻Re⁺L:
 - Weights from e⁻Le⁺R to tag e⁻Re⁺L
 - Weights from e⁻_Re⁺_L:to tag e⁻_Le⁺_R
- Used default configuration of the BDT in train.xml:
 - NTrees=1000:BoostType=Grad:Shrinkage=0.10:UseBaggedBoost:BaggedSampleFraction=0.50:nCuts=20:MaxDepth=6
- Once we obtained the weights we processed the samples with the same $Q\overline{Q}$ processor that we used before.
- We encounter (and fixed) few problems while doing it (next slides).

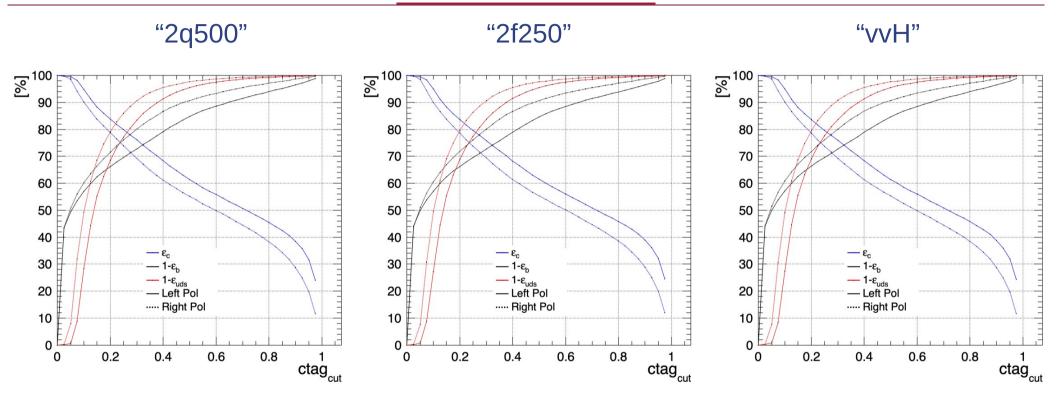
Retraining procedure (issues)

- Aida issue: The steering files seem to be incompatible with Aida.
- Fatal error in the code NaN or +-inf (~700 events out of 100K):
 - Solution (thanks to Ryo Yonamine):
 - Adding "!Tmath::IsNaN(parameter_that_glitches)" in FlavorTag.CategoryPreselection
- "Warming" in the code:
 - Deprecated option UseBaggedGrad changed to UseBaggedBoost.
 - Changed. Doesn't seem to have an impact.
- Right now, reproducing the previous weights with the same samples, to check if the entire
 process its working as expected.


NOTE: The results in the next slides are in a very early stage.

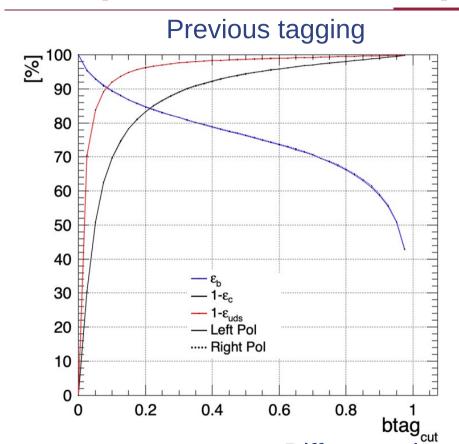
WORK IN PROGRESS

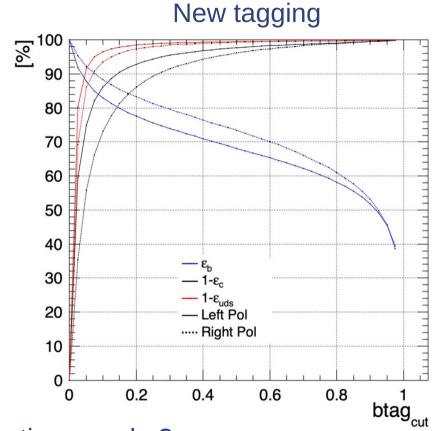
Results for b-tag



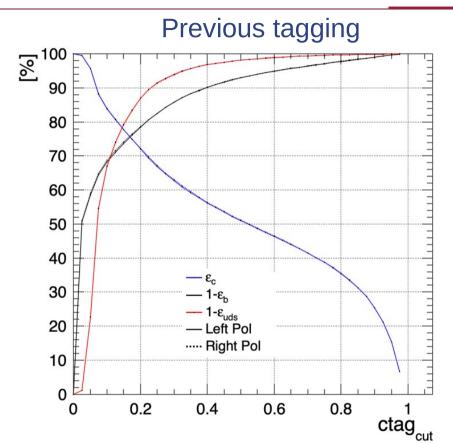
As we expected, the 3 different vtx files reproduce the same result.

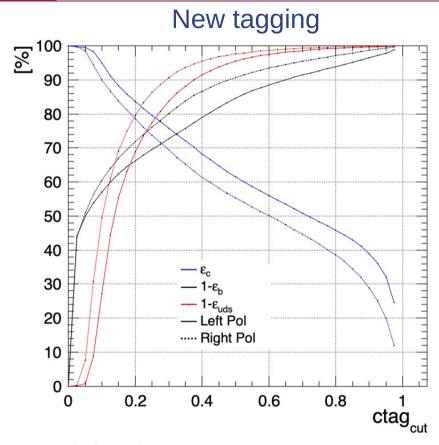
Results for c-tag




As we expected, the 3 different vtx files reproduce the same result. From now on, I will only use the 2f250 one to compare with the previous tagging

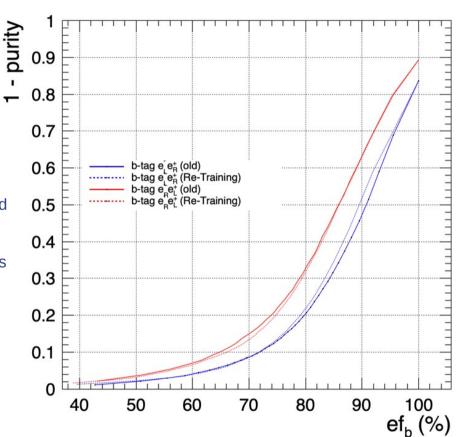
Comparison with the previous tagging (b)




Difference between polarizations... why?
The balance between btag_{cut} and selection/rejection efficiency is shifted

Comparison with the previous tagging (c)

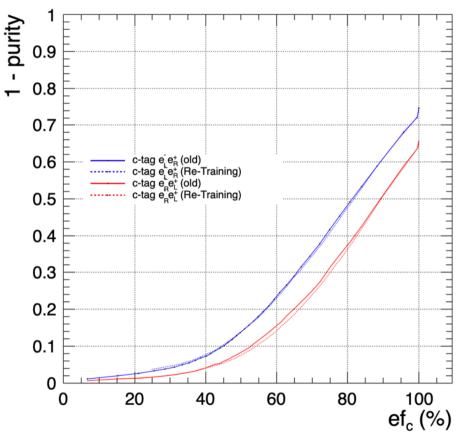
Same effects. But beside this, are the new weights better or worse?


Comparison with the previous tagging (b)

Purity_f=N_{f,tagged}/N_{T,tagged}

N_{f,tagged} = Events of flavor f properly tagged as f quarks

 $N_{T,tagged}$ = All the events tagged as f quarks



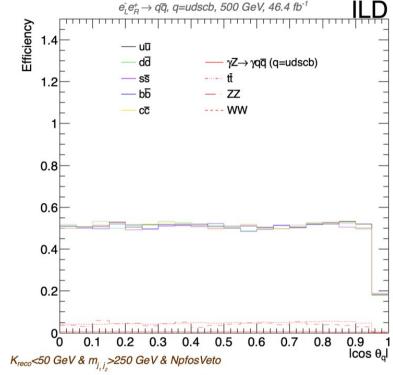
Comparison with the previous tagging (c)

On going work

- Right now, reproducing the previous weights with the same samples, to check if the entire process its working as expected.
 - If it is working well. Check if there's difference in polarization for those weights.
 - If there is, check which polarization were used to train the previous tag (since we only used 1 file for the samples of both polarizations).
 - And... why is there a difference?
 - If not: why do we have it with the 500 GeV weights?
- To do:
 - Digging in the code
 - Be aware of any new "warming" message.
 - Check if the configuration used for the bdt could be improved.
 - Check it the methods in the bdt could be improved.

Back-Up slides

Final preselection (e_Lp_R)


Cuts:

- K_{reco} < 50 GeV
- $m_{2jets} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 3.5
- Photon veto
- $y_{23} < 0.005$
- $m_{j1}+m_{j2} < 140 \text{ GeV}$

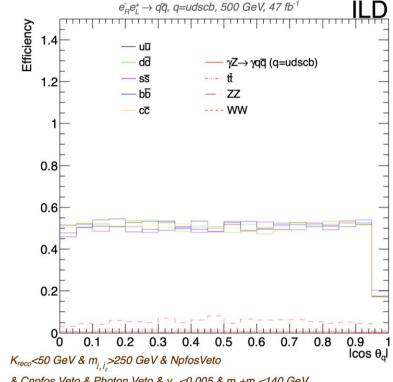
VLC Algorithm parameters:

- R = 1.0
- y = 0.0
- $\beta = 1.0$

	Efficiency (%)			В	ackgrou	ind/Sig	nal			
	$bar{b}$	$c\bar{c}$	q ar q	ISR	WW	ZZ	$t ar{t}$			
No cut	100	100	100	3.50	1.06	0.09	0.10			
+ Cut 1	74.9	74.7	74.7	0.76	0.77	0.06	0.01			
+ Cut 2	74.8	74.6	74.7	0.74	0.77	0.06	9e-03			
+ Cut 3	74.8	74.5	74.3	0.16	0.77	0.06	9e-03			
+ Cut 4	74.7	74.5	74.1	0.11	0.77	0.06	9e-03			
+ Cut 5	72.1	71.7	71.1	0.05	0.58	0.05	9e-03			
+ Cut 6	49.6	49.7	49.6	0.03	0.09	0.01	1e-04			
+ Cut 7	48.6	48.7	48.7	0.02	0.06	5e-03	5e-06			

% Cnpfos Veto & Photon Veto & y_{23} <0.005 & $m_i + m_j < 140 \text{ GeV}$

Final preselection (e_Rp_L)

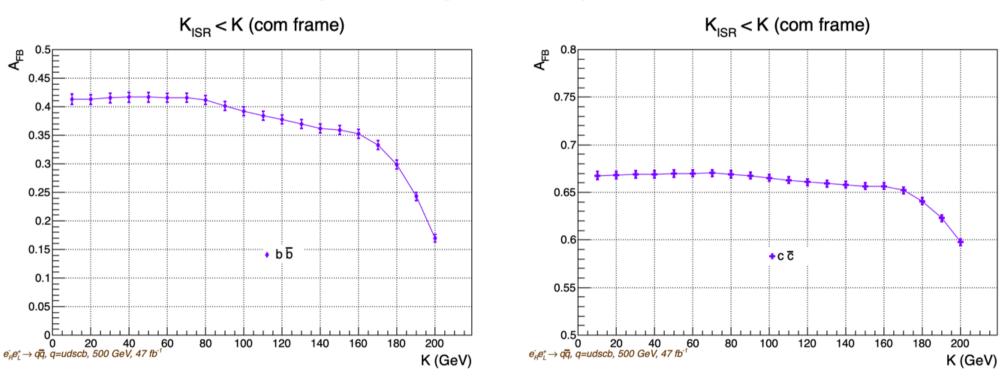

Cuts:

- K_{reco} < 50 GeV
- $m_{2jets} > 250 \text{ GeV}$
- Charged N pfos > 0.5
- Neutral N pfos > 3.5
- Photon veto
- $y_{23} < 0.005$
- $m_{i1}+m_{i2} < 140 \text{ GeV}$

VLC Algorithm parameters:

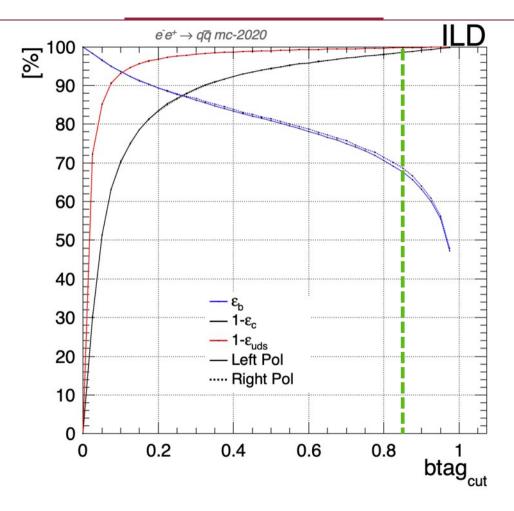
- R = 1.0
- y = 0.0
- $\beta = 1.0$

	Efficiency (%)			В	Background/Signal			
	$b\overline{b}$	$c\bar{c}$	$qar{q}$	ISR	WW	ZZ	$t ar{t}$	
No cut	100	100	100	6.51	0.01	0.11	0.10	
+ Cut 1	74.6	74.6	75.0	1.45	0.01	0.07	0.01	
+ Cut 2	74.5	74.5	75.0	1.43	0.01	0.07	0.01	
+ Cut 3	74.5	74.4	74.7	0.26	0.01	0.07	0.01	
+ Cut 4	74.5	74.4	74.5	0.18	0.01	0.07	0.01	
+ Cut 5	71.9	71.7	71.5	0.07	0.01	0.06	0.01	
+ Cut 6	49.5	49.6	49.6	0.03	5e-04	0.01	9e-05	
+ Cut 7	48.5	48.8	58.7	0.03	3e-04	8e-03	3e-06	


& Cnpfos Veto & Photon Veto & y_{23} <0.005 & $m_i + m_j < 140 \text{ GeV}$

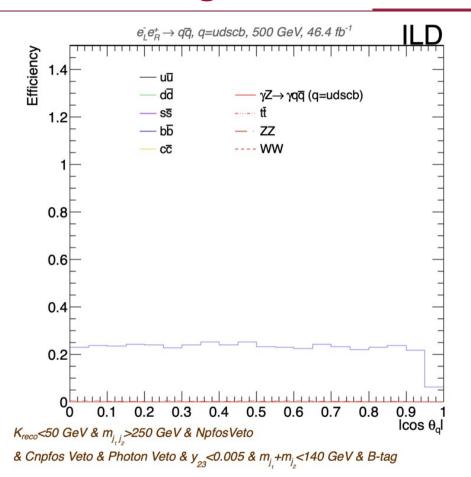
Zoom in K_{ISR} (e_Rp_L)

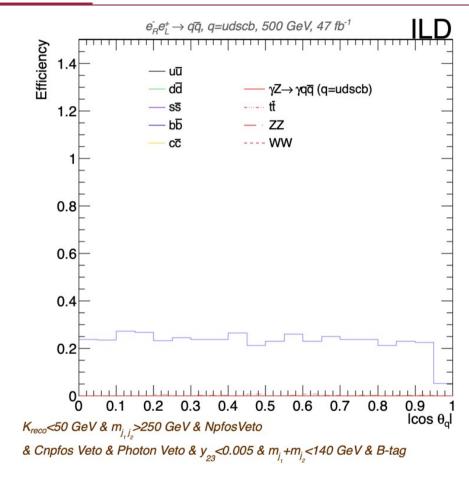
The signals change drastically when K_{ISR}>80 GeV



Safe region from 30 to 70 GeV, we fixed the limit at K_{ISR}=50 GeV

Cut in b-tag

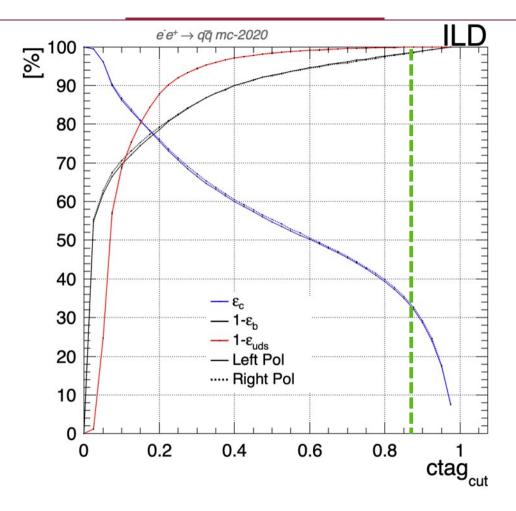




Jesús P. Márquez Hernández - ILD Top/HF group meeting 08/04/22

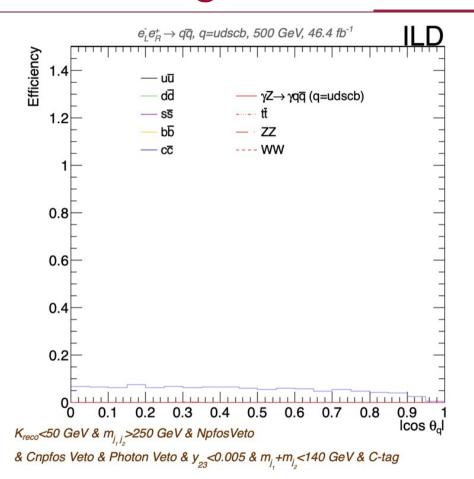
Cut in b-tag

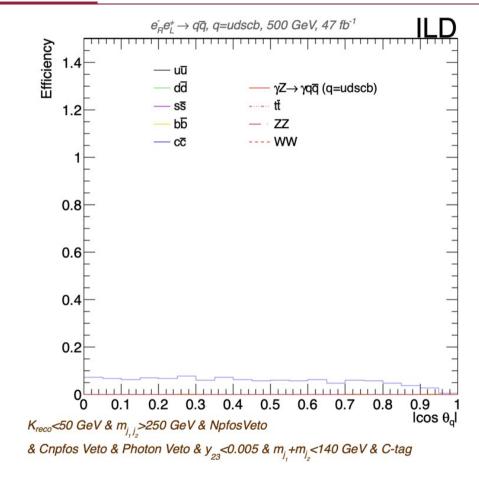
Cut in b-tag



	Effi	ciency	(%)	$\operatorname{Background}/\operatorname{Signal}$				
	$b ar{b}$	$c\bar{c}$	$qar{q}$	ISR	WW	ZZ	$t ar{t}$	
$e_L p_R$	22.1	0.01	0	0.02	8e-05	3e-03	6e-06	
$e_R p_L$	22.4	0.01	2e-03	0.02	0	6e-03	0	

Cut in c-tag





Jesús P. Márquez Hernández - ILD Top/HF group meeting 08/04/22

Cut in c-tag

Cut in c-tag

	Effici	ency	(%)	Background/Signal			
	$b ar{b}$	$c\bar{c}$	q ar q	ISR	WW	ZZ	$t ar{t}$
$e_L p_R$	0.01	5.0	0	0.02	2e-04	6e-04	0
$e_R p_L$	0.03	5.3	0	0.02	0	3e-04	0

