Distortion Corrections for the ALEPH TPC

```
Werner did this
during }10\mathrm{ years
of LEP running
```

Werner Wiedenmann

Werner.Wiedenmann@cern.ch

Overview

- Brief overview of the detector
- Historical development
- Distortion corrections for the TPC
- Tour through some problems and their correction
- Detector performances
- Summary

The ALEPH Detector

TPC

- $\mathrm{r} \varphi$ from pad position
- z from drift time (pads + wires)
- dE/dx from wires and pads
- Length $=4.7 \mathrm{~m}$
- Outer radius $=1.8 \mathrm{~m}$
- Total weight $=3.6 \mathrm{t}$
- Drift length $2 \times 2.2 \mathrm{~m}$
- Up to 21 space points / track
- 18 wire chambers / endplate
- 47340 channels in total
- $\mathrm{B}=15 \mathrm{kG}$
- HV (Membrane) $=-27.5 \mathrm{kV}$
- Gas
- Volume $43 m^{3}$
- Argon/Methan (91:9) at atmospheric pressure
- Angular coverage
- 2π in φ
- 21 pad rows hit for $|\cos \Theta| \leq 0.8$
- At least 3 pad rows for $|\cos \Theta| \leq 0.97$

- r φ-resolution : $180 \mu \mathrm{~m}$
- z-resolution (pads + wires) : $500 \mu \mathrm{~m}$
- $\mathrm{dE} / \mathrm{dx}: 4.5 \%$ for Bhabha electrons

Pad size: $\delta r \varphi \times \delta r=6.2[\mathrm{~mm}] \times 30[\mathrm{~mm}]$

Historical Development

LEP startup 1989-1990

- Failure of magnet compensating power supplies in 1989 requires development of field correction methods
- Derived from 2 special Laser runs (B on/off)
- Correction methods described in NIM A306(1991)446
- High statics Muon pairs from Z-decay is main calibration sample

1991-1994 (LEP 1)

- Silicon Vertex Detector 1 becomes operational in 1991
- Development of common alignment procedures for all three tracking detectors
- Incidents affect large portions of collected statistics and require correction methods based directly on data
- 1991-1993 7 shorts on field cage affect 24% of collected data. 1994 disconnected gating grids make 20% of data unusable
- All data finally recuperated with data-based correction models

1994-1996 (LEP 1/2)

- Aleph Tracking Upgrade Program (Reprocessing of LEP 1 data)
- Improved coordinate determination requires better understanding of systematic effects.
- Combined calculations for field and alignment distortions in TPC. Reevaluation of B-field map.
- All methods for distortion corrections are based now directly on data
- Development of "few" parameter correction models to cope with drastically reduced calibration samples at LEP 2.
- Use high statistics LEP 1 muon pairs to make improved maps also for LEP 2

1995-2000 (LEP 2)

- New VDET 2 with larger acceptance (end 1995)
- Z pairs are only available in special calibration runs at begin of running period and on request from experiments after incidents. Very limited statistics compared to LEP 1.
- More frequent beam losses cause time dependent "charge up" effects in the TPC and new shorts. Both distortions are superimposed.
- For short corrections LEP delivers small amount of Z pairs (~700 muon pairs) on experiment's request.
- Time dependent effects are usually present throughout the year and have to be tracked with hadrons.

Distortion Corrections for the TPC

- Use real data : Muon pairs from Z-decays
- Prerequisite: preliminary calibration of inner tracking detectors exists already
- Global alignment e.g. from survey measurements or from previous data alignments
- Internal calibration for VDET and ITC (Can be done without TPC)
- Fit the 2 tracks of each muon pair with a common single helix
- Momentum is constrained to beam energy
- Helix parameters are determined with 4 hits from VDET and up to 16 hits from ITC. TPC is not in the track fit.

- Measure coordinate residuals in TPC respective to extrapolated single helix on 3 dimensional grid $(\Delta r \varphi, \Delta z)_{\text {obs. }}\left(r_{n}, \varphi_{n}, z_{n}\right)$

$$
\begin{aligned}
& \Delta r \varphi_{\text {observed }}=\Delta r \varphi_{\text {Fields, Aligmment }}-\frac{d_{0}}{\sqrt{r^{2}-d_{0}^{2}}} \Delta r_{\text {Fields, Alignment }} ; \\
& \Delta z_{\text {observed }}=\Delta z_{\text {Fields, Alignment }}-\frac{r}{\sqrt{r^{2}-d_{0}^{2}}} \tan \lambda \Delta r_{\text {Fields, Alignment }}
\end{aligned}
$$

$$
d_{0}=\text { Signed distance of closest approach to origin }
$$

- Compute for fields and alignment $(\Delta r \varphi, \Delta r, \Delta z)_{\text {Fiedss, Alignment }}$ from
- Potential for fields
- Coordinate transformation equations for alignment

$$
\Rightarrow \Delta r \varphi_{\text {Fields, Alignment }}(r, \varphi, z)=\sum_{i} \Delta \widehat{r \varphi}_{i}(r, \varphi, z) \cdot A_{i}
$$

- Solve (overdetermined) system of linear equations for unknown parameters A_{i}

$$
\|\left(\begin{array}{c}
\Delta r \varphi_{\text {obs }}\left(r_{1}, \varphi_{1}, z_{1}\right) \\
\Delta z_{\text {obs }}\left(r_{1}, \varphi_{1}, z_{1}\right) \\
\vdots \\
\Delta r \varphi_{\text {obs }}\left(r_{N}, \varphi_{N}, z_{N}\right) \\
\Delta z_{\text {obs }}\left(r_{N}, \varphi_{N}, z_{N}\right)
\end{array}\right)-\left(\begin{array}{ccc}
\Delta \widehat{r \varphi}_{1}\left(r_{1}, \varphi_{1}, z_{1}\right) & \cdots & \Delta \widehat{r \varphi}_{M}\left(r_{1}, \varphi_{1}, z_{1}\right) \\
\Delta \hat{z}_{1}\left(r_{1}, \varphi_{1}, z_{1}\right) & \cdots & \Delta \hat{z}_{M}\left(r_{1}, \varphi_{1}, z_{1}\right) \\
\vdots & & \vdots \\
\Delta \widehat{r \varphi}_{1}\left(r_{N}, \varphi_{N}, z_{N}\right) & \cdots & \Delta \widehat{r \varphi}_{M}\left(r_{N}, \varphi_{N}, z_{N}\right) \\
\Delta \hat{z}_{1}\left(r_{N}, \varphi_{N}, z_{N}\right) & \cdots & \Delta \hat{z}_{M}\left(r_{N}, \varphi_{N}, z_{N}\right)
\end{array}\right) \cdot\left(\begin{array}{c}
A_{1} \\
\vdots \\
\left.A_{M}\right)
\end{array} \|=\boldsymbol{M i n}\right.
$$

- Solve system of linear equations with Singular Value Decomposition (SVD) (e.g. Numerical Recipes, Cambridge University Press)
- SVD can cope with linear dependencies in function matrix. Solution has from all possibilities the smallest length.

$$
\|\vec{A}\|=\text { Min }
$$

SVD provides for each parameter a weight which allows to identify insignificant parameters to the problem (i.e. remove all parameters with weight < threshold)

Ansatz for $(\Delta \widehat{\boldsymbol{r} \varphi}, \Delta \hat{r}, \Delta \hat{z})_{\text {Fields }}$

- Start with Potential

$$
\begin{gathered}
\Phi_{E}=U_{0}\left(1-\frac{|z|}{z_{M}}\right)-U_{0} \tilde{\Phi}_{E}(r, \varphi, z) ; \quad U_{0} \simeq-27 k V ;\left|\tilde{\Phi}_{E}(r, \varphi, z)\right| \ll 1 ; \quad \text { E-Field } \\
\Phi_{B}=-B_{z}^{0} z-B_{z}^{0} z_{M} \tilde{\Phi}_{B}(r, \varphi, z) ; B_{z}^{0} \simeq 15 k G ;\left|\tilde{\Phi}_{B}(r, \varphi, z)\right| \ll 1 ; \quad B-\text { Field }
\end{gathered}
$$

- Calculate solutions for Laplace equation for double cylinder

$$
\Delta \Phi=0 ; \rightarrow \Phi=\sum_{i j} a_{i j} \Phi_{i j}(r, \varphi, z) ;
$$

- Compute

$$
\vec{E}=-\nabla \Phi_{E} \quad ; \quad \vec{B}=-\nabla \Phi_{B}
$$

- Compute distortions from Langevin equation

$$
\begin{aligned}
& \vec{v}=\frac{\mu}{1+(\omega \tau)^{2}}\left(\vec{E}+(\omega \tau) \frac{\vec{E} \times \vec{B}}{|\vec{B}|}+(\omega \tau)^{2} \frac{\vec{B}(\vec{E} \cdot \vec{B})}{\vec{B}^{2}}\right) \\
& \Delta \widehat{r \varphi}_{E}=\frac{1}{1+(\omega \tau)^{2}} \int_{z}^{z_{\mu}}\left(\frac{E_{\varphi}}{E_{z}}-(\omega \tau) \operatorname{sign}\left(B_{z}\right) \frac{E_{r}}{E_{z}}\right) d z ; \quad \Delta \hat{r}_{E}=\frac{1}{1+(\omega \tau)^{2}} \int_{z}^{z_{\mu}}\left(\frac{E_{r}}{E_{z}}-(\omega \tau) \operatorname{sign}\left(B_{z}\right) \frac{E_{\varphi}}{E_{z}}\right) d z ; \\
& \Delta \widehat{r \varphi}_{B}=\frac{(\omega \tau)}{1+(\omega \tau)^{2}} \int_{z}^{z_{\mu}}\left((\omega \tau) \frac{B_{\varphi}}{B_{z}}-\frac{B_{r}}{\left|B_{z}\right|}\right) d z ; \quad \Delta \hat{r}_{B}=\frac{(\omega \tau)}{1+(\omega \tau)^{2}} \int_{z}^{z_{\mu}}\left((\omega \tau) \frac{B_{r}}{B_{z}}-\frac{B_{\varphi}}{\left|B_{z}\right|}\right) ; \\
& r(z) \simeq r+\frac{\partial r}{\partial z} \delta z ; \varphi(z) \simeq \varphi+\frac{\partial \varphi}{\partial z} \delta z ;\left|\frac{\partial r}{\partial z},\left|\frac{\partial \varphi}{\partial z}\right| \ll 1\right.
\end{aligned}
$$

$$
E_{z}(r, \varphi, z) \simeq E_{z}^{0}= \pm \frac{U_{0}}{z_{M}} ; \quad B_{z}(r, \varphi, z) \simeq B_{z}^{0}
$$

Characteristics of Solutions

- Solution by separation of variables. 3 classes of solutions corresponding to choice of separation variable k^{2}
- $k^{2}=0$

$\tilde{\Phi}_{0}=\ln \left(\frac{r}{r_{o}}\right)\left(A_{0}\left(\frac{z}{z_{M}}\right)+B_{0}\right)$;
$\tilde{\Phi}_{v}=\left(\frac{r}{r_{o}}\right)^{v} \sin (v \varphi)\left(A_{v}\left(\frac{z}{z_{M}}\right)+B_{v}\right)+\left(\frac{r}{r_{o}}\right)^{v} \cos (v \varphi)\left(C_{v}\left(\frac{z}{z_{M}}\right)+D_{v}\right) ; v= \pm 1 \ldots \pm \infty ;$
- $k^{2}>0$

$$
\begin{gathered}
\Psi_{v m}\left(\lambda_{v m} r\right)=\left|\begin{array}{cc}
J_{v}\left(\lambda_{v m} r_{i}\right) & N_{v}\left(\lambda_{v m} r_{i}\right) \\
J_{v}\left(\lambda_{v m} r\right) & N_{v}\left(\lambda_{v m} r\right)
\end{array}\right| ; \Psi_{v m}\left(\lambda_{v m} r_{i}\right)=\Psi_{v m}\left(\lambda_{v m} r_{o}\right)=0 ; \\
v=0 \ldots \infty ; m=1 \ldots \infty ;
\end{gathered}
$$

- $k^{2}<0$

$$
\begin{aligned}
& \tilde{\Phi}_{v m}=\binom{P_{v m, F C o u t}\left(\lambda_{m} r\right)}{P_{v m, F C i n}\left(\lambda_{m} r\right)}\left(A_{v m} \sin (\nu \varphi)+B_{v m} \cos (\nu \varphi)\right) \sin \left(\lambda_{m} z\right) ; \\
& P_{v m, F C o u t}\left(\lambda_{m} r\right)=\frac{\left|\begin{array}{ll}
I_{v}\left(\lambda_{m} r\right) & I_{v}\left(\lambda_{m} r_{i}\right) \\
K_{v}\left(\lambda_{m} r\right) & K_{v}\left(\lambda_{m} r_{i}\right)
\end{array}\right|}{\left|\begin{array}{ll}
I_{v}\left(\lambda_{m} r_{o}\right) & I_{v}\left(\lambda_{m} r_{i}\right) \\
K_{v}\left(\lambda_{m} r_{o}\right) & K_{v}\left(\lambda_{m} r_{i}\right)
\end{array}\right|} ; P_{v m, F C i n}\left(\lambda_{m} r\right)=\frac{\left|\begin{array}{ll}
I_{v}\left(\lambda_{m} r\right) & I_{v}\left(\lambda_{m} r_{o}\right) \\
K_{v}\left(\lambda_{m} r\right) & K_{v}\left(\lambda_{m} r_{o}\right)
\end{array}\right|}{\left|\begin{array}{ll}
I_{v}\left(\lambda_{m} r_{i}\right) & I_{v}\left(\lambda_{m} r_{o}\right) \\
K_{v}\left(\lambda_{m} r_{i}\right) & K_{v}\left(\lambda_{m} r_{o}\right)
\end{array}\right|} ; \\
& \lambda_{m}=\frac{m \pi}{z_{M}} ; v=0 \ldots \infty ; m=1 \ldots \infty ;
\end{aligned}
$$

Greensfunction

$$
\Delta_{\vec{x}} G(\vec{x}, \hat{\vec{x}})=-4 \pi \delta(\vec{x}-\hat{\vec{x}}) ; \quad G(\vec{x}, \hat{\vec{x}})=0 ; \vec{x}, \hat{\vec{x}} \in \text { Boundary }
$$

Solution with Ansatz: $\quad G(\vec{x}, \hat{\vec{x}})=\sum_{\Lambda} a_{A}(\hat{\vec{x}}) U_{\Lambda}(\vec{x})$;

$$
\Rightarrow \quad G(\vec{x}, \hat{x})=4 \pi \sum_{\Lambda} \frac{1}{\Lambda^{2}} U_{\Lambda}(\hat{\vec{x}}) U_{\Lambda}(\vec{x}) ;
$$

U fulfills Helmholtz equation :

$$
\begin{gathered}
\Delta U_{\Lambda}+\Lambda^{2} U_{\Lambda}=0 ; \quad U_{\Lambda}(\vec{x})=0 ; \quad \vec{x} \in \text { Boundary } \\
U_{\Lambda_{v m}}(r, \varphi, z)=\frac{1}{N_{v m n}} \Psi_{v m}\left(\lambda_{v m} r\right)\binom{\sin (v \varphi)}{\cos (v \varphi)} \sin \left(\frac{n \pi}{z_{M}} z\right) ; \quad \Lambda_{v m n}^{2}=\lambda_{v m}^{2}+\left(\frac{n \pi}{z_{M}}\right)^{2} ;
\end{gathered}
$$

Ansatz for $(\Delta \widehat{\boldsymbol{r} \varphi}, \Delta \hat{r}, \Delta \hat{z})_{\text {Alignment }}$

- Transformation from measured TPC coordinate to global ALEPH coordinate

$$
\overrightarrow{\mathcal{X}}_{\aleph}=A_{3}\left(A_{2}\left(A_{1} \vec{x}_{T P C}+\vec{t}_{1}\right)+\vec{t}_{2}\right)+\vec{t}_{3} \quad \begin{aligned}
& \text { 1. TPC sector frame } \rightarrow \text { TPC endplate frame } \\
& \text { 2. TPC endplate frame } \rightarrow \text { TPC frame } \\
& \text { 3. TPC frame } \rightarrow \text { Aleph global coordinate system }
\end{aligned}
$$

- Compute $\Delta \vec{x}_{\aleph}$ as function of small variations of $\left(A_{i}, \vec{t}_{i}\right)$

$$
\begin{aligned}
\text { e.g. } A_{2} & =R_{x} R_{y} R_{z} ; \Rightarrow \Delta A_{2}=9 T_{x} R_{x} R_{y} R_{z}+\delta R_{x} T_{y} R_{y} R_{z}+\phi R_{x} R_{y} T_{z} R_{z} ; \\
R_{x, y, z} & =\text { Rotations of } \operatorname{SO}(3), T_{x, y, z}=\text { Generators of Lie Algebra of } S O(3)
\end{aligned}
$$

- Apply boundary conditions to alignment parameters, e.g endplate alignment should not move complete TPC

- Alignment and field corrections are not independent
- e.g tilt of "perfect TPC" relative to B-field axis causes transverse drift velocities

- e.g bowing of the TPC endplate requires alignment and E-field

Remarks

- There are other corrections (e.g. timing shifts in hardware) which may interfere with the above corrections.
- With the single helix fit residuals can only be measured in a limited acceptance region, i.e.
- Field and alignment corrections can not always be distinguished. The solution may be not unique.
- Fit matrix can be therefore almost degenerate (\rightarrow SVD).
- "External" information helps in guiding the fit.

- Direct fitting of Fourierseries for field distortions is avoided
- Slow convergence = many coefficients needed
- Practical problems for numerical solutions
- Does not allow to identify the contributing distortions
- Normally a simple parameterised potential on the boundary is constructed and transformed via the Greensfunction in a parameterised distortion map (see examples later)
- The calibration is done iteratively (typically 2 iterations)

- Inner detector movements over time are monitored externally and are corrected for the final calibration

VDET movements recorded by the VDET laser system for the years 1998 to 2000

Fourieranalysis

- Powerspectrum from measured residuals
- No corrections applied to data
- $v=0$: fields ($\mathrm{E}-$ and B-map needed)
- $v=1$: mainly global alignment
- $v>1$: mainly internal alignment (e.g. sector alignment)

Data without corrections

Tour through some problems and their correction

- Static problems (always there)
- TPC tilt
- Endplate bowing
- Nonlinear potential on fieldcage
- Single incidents
- Disconnected gating grids (space charge)
- Shorts on field cage
- Time dependent effects
- "Charge up" effects

Tilt of TPC

$\Delta r \varphi(r, \varphi, z)=r \phi_{G}-(\delta x)_{G} \sin \varphi+(\delta y)_{G} \cos \varphi-\operatorname{sign}(z) z_{M}\left(\delta_{G} \sin \varphi+\vartheta_{G} \cos \varphi\right)$

- Example for coupling of field and alignment corrections
- Tilt already seen in survey measurements
- Confirmed with cosmic run (low statistics)
- Data were used to improve the previous measurements and to monitor time dependence

Bowing of TPC endpaltes

$$
\Delta z_{\text {obs }}=\Delta z_{\text {Alignment }}-\left(\Delta r_{\text {Field }}+\Delta r_{\text {Alignment }}\right) \tan \lambda
$$

- Discovered after installation of VDET 1
- Endplate bows outward (TPC has slight overpressure)
- Main effect
$\sim 1 \mathrm{~mm}$ bowing
- Small variation with time
- Coupling of alignment and field corrections (phi dependence from sectors)

Alignment

$$
\Delta z(r, \varphi)=\sum_{S}\left(\vartheta_{S} r \sin \left(\varphi-\bar{\Phi}_{S}\right)+\delta_{S}\left(R_{S}-r \cos \left(\varphi-\bar{\Phi}_{S}\right)\right)+(\delta z)_{s}\right) ;
$$

Endplate is equipotential surface

$$
\Phi\left(r, \varphi, z_{M}+\Delta z(r, \varphi)\right)=0 ; \Rightarrow \tilde{\Phi}\left(r, \varphi, z_{M}\right) \simeq-\frac{\Delta z(r, \varphi)}{z_{M}}
$$

Distortionpotential

$$
\begin{array}{r}
\tilde{\Phi}(r, \varphi, z)=-\sum_{v m} \frac{1}{2 N_{v m}^{2}}\left(A_{v m} \sin v \varphi+B_{v m} \cos v \varphi\right) \Psi_{v m}\left(\lambda_{v m} r\right) \frac{\sinh \left(\lambda_{v m} z\right)}{\sinh \left(\lambda_{v m} z_{M}\right)} \\
\binom{A_{v m}}{B_{v m}}=\int_{r_{i}}^{r_{0}} \int_{0}^{2 \pi} \Delta z(r, \varphi) \Psi_{v m}\left(\lambda_{v m} r\right)\binom{\sin v \varphi}{\cos v \varphi} r d r d \varphi ;
\end{array}
$$

Nonlinear Potential on Field Cage

Possible sources

- Manufacturing errors on electrodes
- Nonlinear resistor chain
- Finite resistivity of FC insulator

Insulator

- Helically wound Mylar $75 \mu \mathrm{~m}$ thick
- 100 mm pitch inner FC, 200 mm pitch outer FC
- Foils glued with Hexel 6103 ($20 \mu \mathrm{~m}$ thick)

Finite Field Cage Resistivity

Potential on Field Cage Surface

$$
\Phi\left(r_{F C}, \varphi, z\right)=U_{0} \frac{\sinh \left(\sqrt{\frac{R_{t o t}}{R_{B}}}\left(1-\frac{|z|}{z_{M}}\right)\right)}{\sinh \left(\sqrt{\frac{R_{t o t}}{R_{B}}}\right)} ;
$$

Distortionpotential

$$
\tilde{\Phi}\left(r_{F C}, \varphi, z\right)=\left(1-\frac{|z|}{z_{M}}\right)-\frac{\sinh \left(\sqrt{\left.\frac{R_{t o t}}{R_{B}}\left(1-\frac{|z|}{z_{M}}\right)\right)}\right.}{\sinh \left(\sqrt{\frac{R_{t o t}}{R_{B}}}\right)} ;
$$

$$
\tilde{\Phi}(r, \varphi, z) \simeq-\operatorname{sign}(z) \frac{R_{\text {Tot }}}{R_{B}} \sum_{n} \frac{1}{(n \pi)^{3}} \sin \left(\frac{n \pi}{z_{M}} z\right) P_{0,(\text { FCout, } F C \text { Cin })}\left(\frac{n \pi}{z_{M}} r\right) ;
$$

- Results from fit can be interpreted as potential deviation or axial shift of electrodes
- Fit prefers $\rho \simeq 10^{16}[\Omega \mathrm{~cm}]$

Correction for nonlinear potential + endplate bowing

Disconnected Gating Grids

- In 1994 the gating grids of 2 sectors got disconnected
- $\sim 10 \%$ of collected statistics affected
- Endplate potential changes
- Ions escape into TPC volume (spacecharge)
- Distortions depend on azimuthal angle and on current

Correction: Fit directly Fourier expansion of Poisson equation :

$$
\Lambda_{v m m}^{2}=\lambda_{v m}^{2}+\left(\frac{n \pi}{z_{m}}\right)^{2} ;
$$

$U_{\Lambda_{v m n}}(r, \varphi, z)=\frac{1}{N_{v m n}} \Psi_{v m}\left(\lambda_{\nu m} r\right)\binom{\sin (\nu \varphi)}{\cos (\nu \varphi)} \sin \left(\frac{n \pi}{z_{M}} z\right) ; \sum_{z[c m]}^{-200}$

Data 1994

Short on Field Cage

- History
- First one end of 1991 ($\sim 13 \%$ of collected data affected)
- Sharp edge on electrode damaged FC insulator
- During repair carbon fibres were introduced in the TPC volume
- 1992: series of 5 shorts ($\sim 41 \%$ of collected data affected)
- 1993: 1 short ($\sim 10 \%$ of collected data affected)
- July 1999: short after beam loss (~58\% of collected data affected)
- Appears just before LEP ramps CM energy to 200 GeV
- August-September 2000: short appears after beam loss and disappears after a second one ($\sim 15 \%$ of collected data affected)
- Higgshunt
- Appear typically after beam loss
- $R \varphi$ - residuals in TPC ~ 1 [mm] \Rightarrow severe impact on tracking
- Except for the 1991 short all shorts are due to introduced carbon fibres
- Short may disappear again $(1992,2000)$
- Position of fibre may change after a new beam loss (e.g. 1992)
- Fibre may be not found or at a different place during a TPC opening = short position not necessarily known from intervention \Rightarrow corrections from data are essential
- At LEP2 shorts were always accompanied by time dependent "charge up effects" on inner FC
\Rightarrow need for parameterised model to disentangle both effects in data

Fibre found at $\mathrm{z}=36 \mathrm{~cm}$

Intervention during 1999 shutdown

$$
\tilde{\Phi}(r, \varphi, z) \simeq \operatorname{sign}\left(z_{S}\right)\left(\frac{\Delta U_{0}}{U_{0}}\right) \sum_{n} \frac{\cos \left(\frac{n \pi}{z_{M}} z_{S}\right)}{n \pi} \sin \left(\frac{n \pi}{z_{M}} z^{n}\right) P_{\text {On, } F F C i n}\left(\frac{n \pi}{z_{M}} r\right)
$$

Short 1999 : Fit with all tracking detectors

"Charge up" effects on Field Cage

- History
- First observed 1992 after a beamloss which caused also a short
- At LEP2 observed every year (beam losses were more frequent)
- Characteristics
- Effect on inner FC, near interaction point , $\Delta \mathrm{r} \varphi \sim 200$ [$\mu \mathrm{m}$] at inner padrows
- Residuals depend on time, decaytime ~ month
- No convincing azimuthal dependence observed
- Impact on physics: mainly bias on impact parameter
- Source: unknown
- Corrections can not be done with μ-pairs at LEP2 \rightarrow not enough statistics to follow time evolution

- Model parameters
- Position $z_{0}\left(\varphi_{0}\right)$
- Width $z_{w,}\left(\hat{\varphi}_{w}\right)$
- ΔV
- Data are binned in time intervals and fitted with model

Distortionpotential (independent of φ)

$$
\tilde{\Phi}(r, \varphi, z) \simeq \sum_{i, n}\left(\frac{\Delta V_{i}}{U_{0}}\right) \frac{-2 \sin \left(\frac{n \pi}{z_{M}} z_{0, i}\right) \sin \left(\frac{n \pi}{z_{M}} z_{w, i}\right)}{n \pi} \sin \left(\frac{n \pi}{z_{M}} z\right) P_{0 n, F C i n}\left(\frac{n \pi}{z_{M}} r\right) ;
$$

TPC Lasersystem

inner field cage

Data 1997: $R \phi$ residuals 4 inner TPC padrows

- Corrections fitted with Hadrons in time slices
- Result tested with muon pairs

Tracking Spectrometer Resolutions

- All data are from 1997 to 2000
- Calibration data
- Muon pairs taken at Z with no known detector problem
- High statistics
- Represent optimal resolutions
- Calibration data for corrections of TPC problems are shown separately
- High energy muon pairs
- Include also all periods with detector problems (e.g. shorts)
- Low statistics
- Test corrections obtained at Z or with Hadrons

Impact Parameter Resolution

Calibration Data

Impact Parameter Resolution

High Energy Data

Momentum Resolution

Calibration Data

High Energy Data

Momentum Resolution

Resolutions for different beam energies (high energy data)

Calibration Data for TPC Problems

Impact Parameter

Calibration data for TPC problems after correction $=$ most pessimistic case

$\begin{array}{ll} \frac{x}{0}_{1}^{1200} \\ z_{0}^{1200} \end{array}$	Constant Mean Sigma	$\mathbf{5 2 6 . 6} \pm$ $-0.4903 \mathrm{E}-04 \pm$ $\mathbf{0 . 5 2 6 0 E - 0 3} \pm$	12.09 $0.8936 \mathrm{E}-05$ $0.8030 \mathrm{E}-05$
1000 800	$\begin{aligned} & \mathbf{Z}^{0} \rightarrow \mu^{+} \mu^{-} \\ & <\mathbf{E}_{\text {Beam }}>=45.6 \mathrm{GeV} \\ & \bullet \mathbf{Q}=+1 \\ & Q=-1 \end{aligned}$	5.3	0^{-4}

$23.6 \mu \mathrm{~m}$

Momentum

Summary

- Mathematical distortion correction models with only a small number of free parameters and mainly data driven correction methods allowed
- to understand the different distortion contributions
- to cope with limited calibration samples (e.g. at LEP 2)
- to recuperate large portions of data which were affected by incidents
- to follow time dependent effects
- to maintain the spectrometer resolutions throughout the running periods
- Muon pairs from Z decays with its kinematic constraints provided a unique reaction to measure residual distributions in the TPC directly with data
- no a priori assumptions about TPC distortions (>< "Hadron fit")
- limits the application of some of the correction methods in other environments besides unbiased residual distributions can be obtained with other methods

