CR-021: ILC-91 (Z-pole) AC Power

Review Report focusing on ML RF & Cryogenics Power

Kaoru Yokoya and Akira Yamamoto

Review Panel

To be reported to IDT-WG2 meeting, 2022-04-19

Outline

- Introduction
- RF Power Evaluation
- Cryogenics Power Evaluation
- Summary

Summary of CR-021, submitted by Benno List : focusing on ILC-91 ML AC-Power Estimates Updated

CHANGE REQU		MS No:		3-06-2020		
NO. ILC-CR-00		00000xxxxxxx	Last modi	fied: 11.1.20	22	
	250-A	250-A	91	91	91	
		Lx2		Lx2	e driven	
Rep-Rate / Hz	5	5	3.7	3.7	5	
Bunches / Pulse	1312	2625	1312	2625	1312	
Lumi / 10 ³⁴	1.35	2.7	0.21	0.41	0.28	
Gradient / MV/m	31.5	31.5	8.8	8.8	8.8	
Q ₀ /1E10	1.0	1.0	1.0	1.0	1.0	
ML E-gain / GeV	220	220	61.2	61.2	61.2	
ML RF / MW	24.4	25.9	13.0	19.3	4.8	i
ML Cryo / MW	15.4	13.1	10.4	11.5	7.1	
ML Power / MW	50.1	53.5	30.9	39.3	17.4	
e- Src / MW	4.9	5.6	5.5	6.6	4.5	
e+ Src / MW	9.3	10.2	9.0	9.6	14.0	
DR / MW	14.2	22.2	15.7	22.2	14.2	Se P
RTML / MW	10.4	13.3	10.9	14.1	9.2	
BDS / MW	9.3	9.3	9.3	9.3	9.3	
Dumps / MW	1.2	1.2	1.2	1.2	1.2	
IR / MW	5.8	5.8	5.8	5.8	5.8	
Campus / MW	2.7	2.7	2.7	2.7	2.7	
Gen. Margin/MW	3.3	4.0	1.8	2.1	2.3	
Total 2022/4/	9 111	138	93	113	81	<mark>→</mark> 91

Boundary condition in CR-021, for Main Linac (ML) RF power

- The ML RF power is calculated from the RF power transferred to the beam, plus the power needed to fill the cavities, divided by the wall plug to beam efficiency of 43%. For the TDR, the ML RF power amounts to 52.1MW (32% of the total 163.8MW).
- The operation at **reduced gradient leads** to operation of klystrons at lower than nominal power, which leads to a **reduction in efficiency**.
- For ML operation for with gradients alternating between positron production and collision modes, the external Q of the couplers is set to the matched value at high gradient (Q_{ext} = 5.5E6), leading to a mismatch at lower gradient. This increases the fill time in collision mode for the electron beam from 259 (171) ns for the positron beam to 329 (217) ns for the electron beam at 1312 (2625) bunches.
- For an **electron driven** source, both, electron and positron MLs will operate at **matched Q**.

ML Cryo power

8.

.8

 The ML cryogenic power is calculated in the same way as in ILC-CR-0018 (w same efficiency in smaller cooling power operation → needs to be studied more)

ML Conventional systems power

• The power consumption of conventional systems (heating and ventilation etc) is calculated in the same way as in the TDR.

Outline

- Introduction
- RF Power Evaluation
- Cryogenics Power Evaluation
- Summary

CR-21 Power Estimate for Z-pole Operation

≻History

- ✓CR-18 Updated power estimate for ILC250 in May 2019
- ✓CR-19 Luminosity for operation at the Z-pole in Jan.2020
 - 3.7+3.7Hz
- ✓CR-21 Power estimate for Z-pole operation
 - Original request in June 2020 by Benno
 - Revised request in Jan. 2022 by Benno
 - Based on the configuration defined by CR-18 and 19

RF-Related Issues

Complication comes from the additional electron beam to create positron

- a. Positron beam for collision (45.6GeV)
- b. Electron beam for collision (45.6GeV)
- c. Electron beam for positron creation (128GeV)

➤ CR-19 adopted

- \checkmark Low gradient (8.76 MV/m) for (a) and (b)
 - The scheme with full gradient (31.5 MV/m) followed by RF-empty cavities is impossible (fast detuning, quadrupole)
- ✓ 3.7+3.7Hz for electron main linac
 - Then, the electron ML RF power consumption (nearly) is the same as in E_{CM} =250GeV case
- \checkmark Matched QL for (a) and (c), but unmatched for (b)
 - Cannot change Q_L at 3.7Hz

> This configuration is adopted in the revised change request

 \checkmark Revised request also includes the e-Driven positron source

I basically agree to this updated request

RF-Related Parameters

		13	12 bunch	es	26	625 bunch	es	e-dr	iven	
		(a) e+	(b) e-	(c) e-	(a) e+	(b) e-	(c) e-	e+	e-	
		for coll.	for coll.	for e+	for coll.	for coll.	for e+			
Rep. rate	Hz	3.7	3.7	3.7	3.7	3.7	3.7	5	5	
Gradient	MV/m	8.76	8.76	31.5	8.76	8.76	31.5	8.76	8.76	
Acceleration in ML	GeV	30.6	30.6	113	30.6	30.6	113	30.6	30.6	
matched QL	`10 ⁶	1.52	1.52	5.46	1.01	1.01	3.61	1.52	1.52	
chosen QL	`10 ⁶	1.52	5.46	5.46	1.01	3.61	3.61	1.52	1.52	
beam pulse length	ms		0.727			0.961		0.7	27	
fill time	ms	0.259	0.329	0.93	0.171	0.217	0.614	0.259	0.259	
RF pulse length	ms	0.986	1.056	1.657	1.132	1.178	1.575	0.986	0.986	
(klystron efficiency)	%	48	53	67	48	53	67	67	67	
AC power for ML RF	MW	1.89	2.03	9.30	3.06	3.18	13.37	2.38	2.38	
AC power for ML RF sum	MW	13.22				19.61		4.76		

RF-Related Parameters (continued)

≻Caveats

- ✓ It is very hard to talk about percent-level accuracy. For example,
- ✓ Klystron efficiency is significantly lower than 67% used for 250GeV case. It is estimated to be ~53% (or ~48% for e+ beam) but almost out of the range of Fig.3.31 (klystron efficiency as a function of the voltage) in TDR. (By the way the modulator efficiency in CR-19 was wrong. Corrected by Benno.)
- ✓ Off-crest angle is 5 degrees in 31.5MV/m case, but it must be much larger in 8.8MV/m case (over 10 degrees)

>The updated CR is reasonable within this accuracy

✓ Minor but obvious correction due to 3GeV overhead for positron production is included in this change review.

Other new inputs

Case of the e-driven positron source

✓Positron source power for 1312 bunches = 24.8 MW (by T. Omori, Jan.17, 2022). The number 14.0 MW in the updated CR is to be replaced.

Outline

➤Introduction

► RF Power Evaluation

Cryogenics Power Evaluation

≻Summary

How to evaluate the ML Cryogenics AC Power for ILC-91

- **References** for cryogenics AC power estimate
 - ILC500 (TDR) in 2013
 - ILC-250 (Higgs): CR-18 in 2019
 - ILC-91 (Z-pole): CR-19 in 2020, and CR-21 in 2020-2022
- Process for estimating the cryogenics power for ILC250 and ILC91
 - Static load: kept constant
 - Dynamic load: scaled (next page) as functions of Gradient (G), Q₀-value, RF pulse-duration, Linac length (L) etc.,
 - RF load (go to beam),
 - Cryogenics loads
 - Input coupler load
 - HOM-coupler, HOM-absorber/beam-pipe, HOM-cavity/2K-structure,
 - CLs for SC magnet (missing, although being relatively small)

ILC ML, Average Heat Loads / CM

Table 3.9 Average heat loads per module in a ML unit, for the baseline parameter in Table 3.1. All values are in watts [27].

		2 K	5	–8 K	40	–80 K		
	Static	Dynamic	Static	Dynamic	Static	Dynamic		
RF Load		8.02						
Radiation Load			1.41		32.49			
Supports	0.60		2.40		18.0			
Input coupler	0.17	0.41	1.73	3.06	16.47	41.78		
HOM coupler (cables)	0.01	0.12	0.29	1.17	1.84	5.8		
HOM absorber	0.14	0.01	3.13	0.36	-3.27	7.09		
Beam tube bellows		0.39						
Current leads	0.28	0.28	0.47	0.47	4.13	4.13		
HOM to structure		0.56						
Coax cable (4)	0.05							
Instrumentation taps	0.07							
Diagnostic cable			1.39		5.38			
Sum	1.32	9.79	10.82	5.05	75.04	58.80		
Total	1	1.11	1	5.87	133.84			

ILC AC Power Scaling

N. Walker Version 1	Cryogenic power			
		oon ho di	uided int	a static and dynamic narte. Eurthormore
19.03.2013				o static and dynamic parts. Furthermore,
	the dynamic part seve	ral sour	ces which	scale differently. The initial values for
Name : ILC AC power estimate scaling lav	^{/s} each contribution are	taken as	fractions	of the total Main Linac load of 32 MW:
EDMS ID : D00000001015345,A,1,1		1		1
	Source	MW	%	scaling law From C. Adolphsen
Item Type : ILC Document	Static load	11.2	35%	L _{linac}
Status : Released ●	Dynamic load:			
	RF load	13.8	43%	$(G^2/Q_0)(t_{beam} + 1.11 t_{fill})L_{linac}f_{rep}$
	Input coupler	3.8	12%	$G(t_{beam} + 2t_{fill})I_{beam}L_{linac}f_{rep}$
	HOM coupler	1.0	3%	$I_{beam}L_{linac}f_{rep}$
	HOM absorber	0.3	1%	$n_b N^2 L_{linac} f_{rep}$
	HOM (cavity)	1.0	3%	$n_b N^2 L_{linac} f_{rep}$
	Beam tube bellows	0.6	2%	$(G^2/Q_0)(t_{beam} + 1.11 t_{fill})L_{linac}f_{rep}$
	Total	32.0	100%	
			-	

PDF (stamped) (https://webservices.desy.de/edms/api/v4/downloads/MTIObjectHandle-0002-1~R~xkcj0liadam--mpprdusrmln~q0StmPdf~mpprdusr~~)

ILC500 (TDR) Cryogenics Operation Power

Table 3.11. Main-linac heat loads and cryogenic plant size [34]. Where there is a site dependence, the values for the flat / mountain topographies are quoted respectively. (The primary difference is in the choice the number of cryo-plants, specifically 6 and 5 plants for flat and mountainous topographies respectively.)

		40–80 K	5–8 K	2 K
Predicted module static heat load	(W/module)	75.04	10.82	1.32
Predicted module dynamic heat load	(W/module)	58.80	5.05	9.79
Number of cryomodules per cryogenic unit		156 / 189	156 / 189	156 / 189
Non-module heat load per cryo unit	(kW)	0.7 / 1.1	0.14 / 0.22	0.14 / 0.22
Total predicted heat per cryogenic unit	(kW)	21.58 / 26.40	2.61 / 3.22	1.87 / 2.32
Efficiency (fraction Carnot)		0.28	0.24	0.22
Efficiency in Watts/Watt	(W/W)	16.45	197.94	702.98
Overall net cryogenic capacity multiplier		1.54	1.54	1.54
Heat load per cryogenic unit including multiplier	(kW)	33.23 / 40.65	4.03 / 4.96	2.88 / 3.57
Installed power	(kW)	547/669	797/981	2028 / 2511
Installed 4.5 K equiv	(kW)	2.50 / 3.05	3.64 / 4.48	9.26 / 11.47
Percent of total power at each level		0.16	0.24	0.60
Total operating power for one cryo unit based on	MW)	2.63 / 3.24		
Total installed power for one cryo unit (MW)		3.37 / 4.16	r	
Total installed 4.5 K equivalent power for one cryo		15.40 / 19.01		

ILC-500, -250, -91 AC-Plug Powers in Comparison (before Linac L. Fraction Corrections)

From: :LC-TDR-AC-CR021-ay220418.xlsx. 250 GeV 1st stage-ay

ial beam ene		5 GeV	con	nfiguration		Baseline	1.35E34	, 5Hz,		L upgrad	le 2.7E34,	5Hz,		7	Pole, 3.7	47				Pole, 3.7 H				Z Pole,	3.7 Hz, e		-
				(DKS)			312, DKS				2625					-			2	625 bunc	h				source		
	Ecm	GeV		500		e+	50 e-	Totals		25 e+	50 e-	Totals		e+	91.2 e- (lumi)	e- (e+ prod)	Totale		e+	91.2 e- (lumi)	e- (e+ prod)	Totale		e+	1.2 e- (lumi)	Totale	-
	Gradient	MV/m		31.5		31.5	31.5	Totais		31.5	31.5	Totals		8.8	8.8	31.5	TULAIS		8.8	8.8	31.5	Tutais		8.8	8.8	TULAIS	
	Q0 Energy gain	GeV		1.0E+10 470		1.0E+10 110	1.0E+10 110			1.0E+10 110	1.0E+10 110			1.0E+10 30.6	1.0E+10 30.6	1.0E+10 110			1.0E+10 30.6	1.0E+10 30.6	1.0E+10 110			1.0E+10 30.6	1.0E+10 30.6		
	Rep. rate	Hz		5		5	5			5	5			3.7	3.7	3.7			3.7	3.7	3.7			5	5		
	Linac length factor Linac energy factor			1.0 1.0		0.47	0.47 0.47	0.94		0.47	0.47 0.47	0.94		0.47 0.13	0.47 0.13	0.47	0.94		0.47 0.13	0.47	0.47 0.47	0.94		0.47 0.13	0.47 0.13	0.94	Prob
	Particles per bunch	×10 ¹⁰		2.0		2.0	2.0			2.0	2.0			2.0	2.0	2.0			2.0	2.0	2.0			2.0	2.0		
	Number of bunches			1312		1312	1312			2625	2625			1312	1312	1312			2625	2625	2625			1312	1312		
	Average beam power (dump)	MW		10.5		2.9	2.9	_		5.9	5.9			0.9	0.9	2.2			1.9	1.9	4.4			1.3	1.3		-
	Δt _b *f _{DR}			360		360	360	_		238	238			360	360	360			238	238	238			360	360		-
	Δt _b	ns		553.8 726.6		553.8 726.6	553.8 726.6	1		366.2 961.2	366.2 961.2			553.8	553.8 726.6	553.8 726.6			366.2 961.2	366.2 961.2	366.2 961.2			553.8 726.6	553.8 726.6	-	-
	Beam pulse Beam current	mA.		726.6 5.79		5.79	5.79	1		961.2	961.2 8.75			726.6 5.79	5.79	5.79			961.2 8.75	961.2 8.75	961.2 8.75			5.79	5.79		-
	Matched QL	×10 ⁶		5.5		5.5	5.5			3.6	3.6			1.5	1.5	5.5			1.0	1.0	3.6			1.5	1.5		
	Chosen Qext	x10 ⁶		5.5		5.5	5.5			3.6	3.6			1.5	5.5	5.5			1.0	3.6	3.6			1.5	1.5		
	tra	us		925.9		925.9	925.9			612.1	612.1			259.0	329.0	930.0			171.0	217.0	614.0			259.0	259.0		
	RF pulse length	ms		1.65 44%		1.65 44%	1.65			1.57 61%	1.57			0.99	1.06	1.66			1.13	1.18	1.58			0.99	0.99		
	RF to beam P eff.			4470		44%	44%			01%	61%			14%	69%	44%			85%	82%	61%			74%	14%		-
	2x average linac beam power	MW		9.88	9.88	2.31	2.31	4.62		4.63	4.63	9.25		0.48	0.48	1.71	2.66		0.95	0.95	3.42	5.33		0.64	0.64	1.29	
	Average RF power AC-RF Efficiency	MW		22.5 43%		5.3 43%	5.3 43%			7.6 43%	7.6 43%			0.6	0.7	3.9 43%			1.1	1.2 37%	5.6 43%			0.9	0.9		+
	Total RF AC power	MW		52.13	52.1	43%	43%	24.4	21.9%	17.6	4376	35.1	25.5%	1.9	2.0	43% 9.1	13.0	14.0%	3/76	3.2	43%	19.3	17.1%	2.4	2.4	4.8	-
	Total efficiency			19%		19%	12.2 19%			26%	26%			25%	23%	19%			31%	30%	26%			27%	27%		
	RF power dumped	MW	_	42.3	42.3	9.9	9.9	19.8		12.9	12.9	25.9		1.4	1.6	7.3	10.3		2.1	22	9.6	13.9		1.7	1.7	3.5	-
	Static cryo power	MW		10.5		2.5	2.5			2.5	2.5			2.5	2	.5			2.5	2	.5			2.5	2.5		x 1/2
	RF load Input coupler			13.2 3.6		3.1 0.8	3.1 0.8			2.9 1.1	2.9 1.1			0.1	0.1	2.3			0.1 0.1	0.1 0.1	2.1 0.8			0.1	0.1		(artif
	HOM coupler			0.9		0.8	0.8			0.3	0.3			0.2	0.2	0.0			0.1	0.2	0.2			0.2	0.1		
	HOM absorber			0.3		0.1	0.1			0.1	0.1			0.1	0.1	0.1			0.1	0.1	0.1			0.1	0.1		
	HOM (cavity)			0.9		0.2	0.2			0.4	0.4			0.2	0.2	0.2			0.3	0.3	0.3			0.2	0.2		
	Beam tube bellows Gfac			0.6 8.73E-04		0.1 4.06E-04	0.1 4.06E-04			0.1 3.82E-04	0.1 3.82E-04			0.0 1.35E-05	0.0 1.45E-05	0.1 3.03E-04			0.0 1.53E-05	0.0 1.60E-05	0.1 2.83E-04			0.0 1.82E-05	0.0 1.82E-05		
	Pfac			1.47E+06		6.86E+05	4.08E+04 6.86E+05	-		8.80E+05	8.80E+05			6.82E+04	7.40E+06 7.59E+04	5.10E+05			1.08E+05	1.16E+05	6.52E+05			9.22E+04	9.22E+04		-
	Bfac		2	2.62E+04		1.23E+04	1.23E+04			2.46E+04	2.46E+04			9.09E+03	9.09E+03	9.09E+03			1.82E+04	1.82E+04	1.82E+04			1.23E+04	1.23E+04		
	Cfac DF durantic	1.41.57	1	1.81E+01		8.45E+00	8.45E+00	_		1.28E+01	1.28E+01			6.25E+00	6.25E+00	6.25E+00			9.46E+00	9.46E+00	9.46E+00			8.45E+00	8.45E+00		-
	RF dynamic Margin	MW 10	0%	19.5		4.6	4.6			5.0	5.0 0.7			0.6	0.6	3.4			0.9	0.9	3.7			0.7	0.7		-
	Total cryo AC power	MW		30.0	30.0	7.7	7.7	15.4	13.9%	8.2	8.2	16.4	11.9%	3.3		.1	10.4	11.2%	3.7		.8	11.5	10.2%	3.5	3.5	7.1	
	Emergency load	MW		4.3		1.0	1.2			1.0	1.0			1.0	1	.0			1.0	1	.0			1.0	1.0		-
	Normal load	MW		12.1		2.8	2.8			3.7	3.7			0.4		.5			0.6		4			0.5	0.5		
	RF racks NC Magnets and PS	MW		4.7 0.9		1.1	1.1			1.1	1.1			1.1		.1			1.1	1	.1			1.1	1.1		-
	Total CF	MW		22.0	22.0	5.1	5.3	10.5	9.4%	6.0	6.0	12.0		2.7		.9	7.6		2.9		.7	8.6		2.8	2.8	5.6	
Main Lin	ac	MW		104.10	104.1	25.1	25.3	50.3	45.2%	31.8	31.8	63.5	46.1%	7.9	2	3.0	30.9	33.3%	9.7	2	.7	39.3	34.8%	8.7	8.7	17.4	
rce		MW		4.87		4.9				5.6					5.5					6.6					1.5	-	-
urce		MW		9.32		9.3				10.2					9.0					9.6				1	4.0		
otal)		MW		15.72		14.2				22.2					15.7					22.2					4.2		-
-		MW		10.40 12.38		10.4				13.3					10.9 9.3					14.1 9.3					9.2 9.3	-	\vdash
ŝ		MW		1.21		1.2				1.2					1.2					1.2					1.2		
		MW		5.76	59.7	5.8		55.1	54.8%	5.8		67.5	53.9%		5.8		57.4	66.7%		5.8		68.7	65.2%		5.8	58.2	
	(Idependent main campus) (3%. Suggested)					2	.7	2.7 3.3			2.7	2.7 4.0			2.7					2.7					2.7	-	
nd total		MW		163.8	164	11	1.4	111		13	7.7	138			92.8		93			112.9		113		8	0.6	81	4

15

ILC-500, -250, -91 AC-Plug Powers in Comparison (before Linac L. Fraction Corrections)

From: :LC-TDR-AC-CR021-ay220418.xlsx. 250 GeV 1st stage-ay

									G	н		0	P	Q	R	S								
l beam ene	1	i GeV	configura				a 1.35E34 312, DKS	, 5Hz,									, 3.7 H i buncl					3.7 Hz, e source		
	Ecm	GeV	(DKS) 500			25			-								1.2					1.2		-
						e+	e-	Totals		configuration			Baselin	e 1.35E34,	5Hz,		(lumi) 8.8	e- (e+ prod)	Totals		e+	e- (lumi)	Totals	
	Gradient 00	MV/m	31.5 1.0E+1			31.5 1.0E+10	31.5 1.0E+10		-	(DKS)			1	312, DKS			8.8 NE+10	31.5 1.0E+10			8.8 1.0E+10	8.8 1.0E+10	'	-
	Energy gain	GeV	470	· –		110	110		_				-				0E+10 30.6	110			30.6	30.6		\vdash
	Rep. rate	Hz	5			5	5			500			2	50			3.7	3.7			5	5	4	
	Linac length factor		1.0			0.47	0.47	0.04	-				e+	e-	Totals		.47	0.47	0.94		0.47	0.47	0.94	0
	Linac length factor		1.0			0.47	0.47	0.34	-	31.5			31.5	31.5	Totals		0.13	0.47	0.34		0.47	0.47	0.34	PT
										1.0E+10			1.0E+10	1.0E+10			-							
	Particles per bunch	×10 ¹⁰	2.0			2.0	2.0		_								2.0	2.0			2.0	2.0		1
	Number of bunches Average beam power (dump)	MW	1312			1312	1312 2.9		-	470			110	110			2625 1.9	2625 4.4			1312 1.3	1312		+
	Δ4.*f _{DR}	MIN	360			360	360			5			5	5			238	238			360	360		F
	Δη.	ns	553.8			553.8	553.8		-								66.2	366.2			553.8	553.8		F
	Beam pulse	us	726.6				726.6		-	1.0		- C	0.47	0.47	0.94		961.2	961.2			726.6	726.6		F
	Beam current	mA	5.79			726.6 5.79	5.79								0.04		961.2 8.75	8.75			5.79	5.79		
	Matched QL	×10 ⁶	5.5			5.5	5.5			1.0			0.47	0.47			1.0	3.6			1.5	1.5	<u> '</u>	1
	Chosen Qext	x10 ⁶	5.5			5.5	5.5										3.6	3.6			1.5	1.5	↓ ′	+
	ka DE milan konstr	us ms	925.9			925.9 1.65	925.9 1.65		\rightarrow	2.0			2.0				217.0	614.0 1.58			259.0	259.0	<u> '</u>	⊢
	RF pulse length RF to beam P eff.	ms	44%			44%	44%		. / _	1312			1312	Proble	. wc		- 1.18 82%	61%			0.99 74%	0.99 74%		t
										10.5			2.9	TUDIC	<i>.</i>		-							
	2x average linac beam power Average RF power	MW MW	9.88 22.5	9.6	38	2.31 5.3	2.31 5.3	4.62						1			0.95	3.42 5.6	5.33		0.64	0.64	1.29	Ł
	AVerage KF power AC-RF Efficiency	MW	43%			43%	43%			360			360	L-tota			37%	43%			37%	37%		t
	Total RF AC power	MW	52.13	52	1	12.2	43% 12.2	24.4		552.9			553.8		•		3.2	13.0	19.3	17.1%	2.4	2.4	4.8	
	Total efficiency RF power dumped	MW	19%	42		19%	19% 9.9	19.8	_	553.8				Chaul	مالم		30%	26% 9.6	13.9		27%	27%	3.5	⊢
	Kr power dumped	MIN	942.3	92	.3	9.9	9.9	19.0		726.6			726.6	Shoul	a de)	22	9.0	13.9		1./	1.7	3.0	t
	Static cryo power	MW	10.5			2.5	2.5			5.79			5.79				2	.5			2.5	2.5	. 1	×
	RF load Input coupler		13.2			3.1 0.8	3.1 0.8		-	5.5			5.5	0.47			0.1	2.1 0.8			0.1	0.1	1 /	(a
	HOM coupler		0.9			0.2	0.2		-					0.47		_	0.2	0.2			0.2	0.2	1 /	
	HOM absorber		0.3			0.1	0.1			5.5			5.5				0.1	0.1			0.1	0.1	1 /	
	HOM (cavity) Beam tube bellows		0.9			0.2	0.2		-	925.9			925.9	925.9			0.3	0.3 0.1			0.2	0.2	1 /	
	Gfac		8.73E-0	1		4.08E-04	4.08E-04		-								0E-05	2.83E-04			1.82E-05	1.82E-05		
	Pfac		1.47E+0	6		6.86E+05	6.86E+05		_	1.65			1.65	1.65			6E+05	6.52E+05			9.22E+04	9.22E+04		
	Bfac Cfac		2.62E+0 1.81E+0			1.23E+04 8.45E+00	1.23E+04 8.45E+00		_	44%			44%	44%			2E+04 6E+00	1.82E+04 9.46E+00			1.23E+04 8.45E+00	1.23E+04 8.45E+00		H
	RF dynamic	MW	19.5	·		4.6	4.6		-								0.9	3.7			0.7	0.402700		t
	Margin		0%			0.7	0.7			9.88	9.88		2.31	2.31	4.62		0	.7			0.3	0.3		
	Total cryo AC power	MW	30.0	30	.0	7.7	7.7	15.4	-	22.5			5.3	5.3			7.	8	11.5	10.2%	3.5	3.5	7.1	+
	Emergency load	MW	4.3			1.0	1.2			43%			43%	43%			1	.0			1.0	1.0		
	Normal load	MW	12.1			1.0 2.8 1.1	1.2 2.8 1.1		_		69.4					04.000	3				0.5	0.5		H
	RF racks NC Magnets and PS	MW	4.7			1.1	1.1			52.13	52.1		12.2	12.2	24.4	21.9%	1.				1.1 0.2	1.1	<u> </u>	t
	Total CF	MW	22.0	22	.0	5.1	5.3	10.5	_	19%			19%	19%			5	.7	8.6		2.8	2.8	5.6	
lain Lina		MW	104.10	104		25.1	25.3	50.3	_	42.3	42.3		9.9	9.9	19.8			7	39.3	34.99/	8.7	8.7	17.4	+
an Lina	N			104		20.1	20.3	50.3												34.076		0.7	11.4	
æ		MW	4.87			4.9				10.5			2.5	2.5		Ar	tifi	ciall	V/ V/	1/	4	1.5		F
ce sl)		MW	9.32			9.3			-	13.2			3.1	3.1		AI		Jall	ух	/2	14	4.0 4.2	↓ ′	H
- /		MW	10.40			10.4			_	3.6			0.8	0.8					-		9.	9.2		
		MW	12.38			9.3			_	0.9				0.8			mr	bens	sat	ρ		9.3	1	F
		MW	1.21	59	7	1.2		55.1					0.2				-			C	1.	1.2 5.8	58.2	+
			0.70						_	0.3			0.1	0.1	<u>н</u> тг	-								
	(Idependent main campus)						2.7	2.7	_	0.9			0.2	0.2	L th	e p	ror	lerr)			2.7	1 7	F
argin	(3%. Suggested)					3	1.3	3.3	-	0.6			0.1	0.1		5 P					2	2.3	+'	t
total		MW	163.8	16	4	11	1.4	111		8.73E-04			4.08E-04	4.08E-04			12.9		113		80	0.6	81	
	0000 / 1/100								_		view R		6.86E+05	6.86E+05										F
	2022/4/19													D 2007 + 123										

16

Some Corrections/Updates suggested

- The Linac Length Factor may be re-defined.
 - Reference:
 - Total ML length for both e+ and e- at ILC500 normalized to be 1
 - Each e+ and e- Linac Length at ILC 500 becomes \rightarrow 0.5
 - Each e+ and e- Linac Length at ILC 250 becomes \rightarrow 0.5 x 0.47 = 0.235
- It is appropriate for further evaluation to be much simple with minimum confusions.
- The final result for the AC power may be kept same/similar.

ILC-500, -250, -91 AC-Plug Powers in Comparison (after Linac Length Corrections)

From: :LC-TDR-AC-CR021-ay220418.xlsx. 250 GeV 1st stage (ay220418)

uai beam er		5 Gev	configuration (DKS)		Baseline	1.35E34, DKS	5Hz, 1312,		L upgr	ade 2.7E3 2625	4, 5Hz,			Z Pole, 3.7	Hz			z	Pole, 3.7 I 2625 b	Hz,				3.7 Hz, e source		
	Ecm	GeV	500		2	50			2	50		7		91.2					91.2					1.2		
	Loni					Ī				1																
	Gradient	MV/m	31.5		e+ 31.5	e- 31.5	Totals		e+ 31.5	e- 31.5	Totals		6 e+ 9 8.8	e- (lumi) 8.8	e- (e+ prod) 31.5	Totals		e+ 17.5	e- (lumi) 8.8	e- (e+ prod) 31.5	Totals		e+ 17.5	e- (lumi) 17.5	Totals	
	Q0		1.0E+10		1.0E+10	1.0E+10			1.0E+10	1.0E+10		1	0 1.0E+10	1.0E+10	1.0E+10			1.0E+10	1.0E+10	1.0E+10			1.0E+10	1.0E+10		
	Energy gain Rep. rate	GeV	470		110	110			110	110		1	1 30.6 2 3.7	30.6	110 3.7			30.6	30.6 3.7	110			30.6 5	30.6		
												1	3													
	Linac length factor		1.0		0.23	0.23	0.47		0.23	0.23	0.47	14	0.23	0.23	0.23	0.47		0.23	0.23	0.23	0.47		0.23	0.23	0.47	Corr
	Linac energy factor		10			0.20			0.23	0.20		1	6		0.20	0.21		0.10	0.10	0.0				0.10		
	Particles per bunch	×10 ¹⁰	2.0		2.0	2.0			2.0	2.0		1		2.0	2.0			2.0	2.0	2.0			2.0	2.0		
	Number of bunches	8.41.67	1312 10.5		1312	1312	_		2625	2625 5.9		1	8 1312	1312	1312			2625	2625	2625 4.4			1312	1312		
	Average beam power (dump) $\Delta t_b * f_{DR}$	MW	360		2.9	2.9			5.9 238	238		2		0.9	2.2 360			1.9	1.9 238	238	-		1.3 360	1.3	+	
	Δt.	ns	553.8		553.8	553.8			366.2	366.2		2		553.8	553.8			366.2	366.2	366.2	-		553.8	553.8	+	
	Beam pulse	US	726.6		726.6	726.6			961.2	961.2		2		726.6	726.6			961.2	961.2	961.2			726.6	726.6	+	
	Beam current	mA	5.79		5.79	5.79			8.75	8.75		2		5.79	5.79			8.75	8.75	8.75			5.79	5.79		
	Matched QL	×10 ⁶	5.5		5.5	5.5			3.6	3.6		2	4 1.5	1.5	5.5			2.0	1.0	3.6			3.0	3.0		
	Chosen Qext	x10 ⁶	5.5		5.5	5.5			3.6	3.6		2	5 1.5	5.5	5.5			2.0	3.6	3.6			3.0	3.0		
	tea.	us	925.9		925.9	925.9			612.1	612.1		2		329.0	930.0			171.0	217.0	614.0			259.0	259.0		
	RF pulse length RF to beam P eff.	ms	1.65		1.65	1.65			1.57	1.57		2	7 0.99 8 74%	1.06	1.66 44%			1.13	1.18	1.58 61%	-		0.99	0.99		
			444 70		1976 70	444 70			61%	61%		2	9	09%	444 70			85%	82%	61%			74%	74%	-	
	2x average linac beam power	MW	9.88	9.88	2.31	2.31	4.62		4.63	4.63	9.25	3		0.48	1.71	2.66		0.95	0.95	3.42	5.33		0.64	0.64	1.29	
	Average RF power AC-RF Efficiency	MW	22.5		5.3 43%	5.3 43%			7.6	7.6		3		0.7	3.9 43%			1.1	1.2 37%	5.6 43%	-		0.9	0.9		
	Total RF AC power	MW	52.13	52.1	12.2	12.2	24.40	21.9%	17.6	17.6	35.1	26.1% 3	3 1.9	2.0	9.1	12.97	14.0%	3.1	3.2	13.0	19.3	17.3%	2.4	2.4	4.8	5.9%
	Total efficiency		19%		19%	19%			26%	26%		3	25%	23%	19%			31%	30%	26%			27%	27%		
	RF power dumped	MW	42.3	42.3	9.9	9.9	19.78		12.9	12.9	25.9	3	5 1.4	1.6	7.3	10.31		2.1	22	9.6	13.9		1.7	1.7	3.5	
o	Static cryo power	MW	10.5		2.5	2.5			2.5	2.5		3	2.5	1 1	2.5			2.5	2	2.5			2.5	2.5		not, x
	RF load		13.2		3.1	3.1			2.9	2.9		3	8 0.1	0.1	2.3			0.5	0.1	2.1			0.6	0.6		
	Input coupler HOM coupler		3.6		0.8	0.8			0.5	1.1		4	0.1	0.1	0.6			0.3	0.1	0.2			0.2	0.2	1	
	HOM absorber		0.3		0.1	0.1			0.1	0.1		4	0.1	0.1	0.1			0.1	0.1	0.1			0.1	0.1		
	HOM (cavity)		0.9		0.2	0.2			0.4	0.4		4	2 0.2 3 0.0	0.2	0.2			0.3	0.3	0.2			0.2	0.2		
	Beam tube bellows Gfac (RF-G f.)		8.73E-04		2.04E-04	2.04E-04			1.91E-04	1.91E-04		4	6.75E-06	7.27E-06	1.52E-04			3.06E-05	8.00E-06	1.41E-04			3.65E-05	3.65E-05	1	
	Pfee (P. Input Coupl)		1.47E+06		3.435+05	2.435+05			4.40E+05	4.40E+05			2415+04	3.795+04	2.555+05			1.095+05	5.785+04	3.265+05			0.225+04	0.225+04		
	Bfac (Cfac		2.62E+04 1.81E+01		6.14E+03 4.23E+00	6.14E+03 4.23E+00		ILC	1.23E+04 6.39E+00	1.23E+04 6.39E+00		4	5 4.54E+03 7 3.13E+00	4.54E+03 3.13E+00	4.54E+03 3.13E+00			9.09E+03 4.73E+00	9.09E+03 4.73E+00	9.09E+03 4.73E+00			6.14E+03 4.23E+00	6.14E+03 4.23E+00		
	RF dynamic	MW	19.5		4.6	4.232+00			4.4	5.0		4	3.132+00	0.6	3.4			1.4	0.9	3.5			1.3	1.3		
	Margin	10	1%		0.7	0.7			0.7	0.7		- 48	9 0.3		1.6			0.4	0	0.7			0.4	0.4		
	Total cryo AC power	MW	30.0	30.0	7.7	7.7	15.45	13.9%	7.6	8.2	15.8	11.7% 5	0 3.3	1	1.1	10.37	11.2%	4.2	7	7.6	11.8	10.6%	4.1	4.1	8.3	10.3%
	Emergency load	MW	4.3		1.0	1.2			0.5	0.5		5	2 1.0		1.0			0.5	1	1.0			0.5	1.0		
	Normal load	MW	12.1		2.8	2.8			3.7	3.7		5.	3 0.4		2.5			0.6		3.4	T		0.5	0.5		
	RF racks NC Magnets and PS	MW	4.7		1.1	1.1			0.5	0.5		5	1 1.1		1.1			0.5		0.5	-		0.5	0.5	+	
	Total CF	MW	22.0	22.0	5.1	5.3	10.49	9.4%	4.9	4.9	9.7	5	5 2.7		1.9	7.57		1.8		5.0	6.8		1.7	2.2	3.8	
												5	7				00 00V									
al Main Li	inac	MW	104.10	104.1	25.1	25.3	50.34	45.2%	30.0	30.6	60.6	45.0% 5	8 7.9	2	3.0	30.91	33.3%	9.1	2	8.8	37.9	34.0%	8.2	8.7	16.8	21.0%
ource		MW	4.87		4.9				5.6			6	0	5.5					6.6				4	4.5		
ource		MW	9.32		9.3				10.2			6	1	9.0					9.6					14.0		
(total) (L		MW	15.72		14.2 10.4				22.2 13.3			6	2	15.7 10.9					22.2 14.1		-			14.2 9.2		
S		MW	12.38		9.3				9.3			6	1	9.3					9.3					9.3		
nps		MW	1.21		1.2				1.2			65	5	1.2					1.2					1.2		-
		MW	5.76	59.7	5.8		55.06	54.8%	5.8		67.5	55.0% 61 6	7	5.8		57.35	66.7%		5.8		68.7	66.0%	5	5.8	58.2	79.0%
1 Campus	s (Idependent main campus)					2.7	2.70			2.7	2.7	6	3	2.7					2.7				2	2.7		
	(3%. Suggested)					3.3	3.32			3.9	3.9	6	9	1.8					2.1					2.3		
		MW	163.8	164		1.4				4.7		71	1	92.8					111.5		111		L		_	

SCQ current lead thermal load evaluation (1/2)

TDR-III-2, Table 3.9. Average heat load [W]/CM in a ML-unit (3-CM) for the baseline parameter in Table 3.1.

		2 K	5	–8 K	40	–80 K		
	Static	Dynamic	Static	Dynamic	Static	Dynamic		
RF Load		8.02						
Radiation Load			1.41		32.49			
Supports	0.60		2.40		18.0			
Input coupler	0.17	0.41	1.73	3.06	16.47	41.78		
HOM coupler (cables)	0.01	0.12	0.29	1.17	1.84	5.8		
HOM absorber	0.14	0.01	3.13	0.36	-3.27	7.09		
Beam tube bellows		0.39						
Current leads	0.28	0.28	0.47	0.47	4.13	4.13		
HOM to structure	0	.56 0.56	0	.94	8	.26		
Coax cable (4)	0.05		-		-			
Instrumentation taps	0.07							
Diagnostic cable			1.39		5.38			
Sum	1.32	9.79	10.82	5.05	75.04	58.80		
Total	1	1.11	1	5.87	133.84			

		2K	5-8K	40-80K	ToTal	Fraction
T. Efficiency		702.98	197.94	16.45		
<scm>//CM</scm>	W	0.56	0.94	8.26		
SCM AC-Power/ CM	kW	0.394	0.186	0.136	0.716	0.054
Cryo-Total/CM	W	11.11	15.87	133.04		
Total AC-Power/CM	kW	7.810	3.141	2.189	13.141	1

Heat load Fraction:

- SCM/Total-Cryog = ~0.05
- Total-Cryog / Total-ILC : < 0.2

→SCM/Total-ILC :< ~ 1 %

 \rightarrow SCM thermal load may be absorbed within 'general margin of AC power = \sim a few %.

	250-A	250-A Lx2	91	91 Lx2	91 e driven
Rep-Rate / Hz	5	5	3.7	3.7	5
Bunches / Pulse	1312	2625	1312	2625	1312
Lumi / 10 ³⁴	1.35	2.7	0.21	0.41	0.28
Gradient / MV/m	31.5	31.5	8.8	8.8	8.8
Q ₀ /1E10	1.0	1.0	1.0	1.0	1.0
ML E-gain / GeV	220	220	61.2	61.2	61.2
ML RF / MW	24.4	25.9	13.0	19.3	4.8
ML Cryo / MW	15.4	13.1	10.4	11.5	7.1
ML Power / MW	50.1	53.5	30.9	39.3	17.4
e- Src / MW	4.9	5.6	5.5	6.6	4.5
e+ Src / MW	9.3	10.2	9.0	9.6	14.0
DR / MW	14.2	22.2	15.7	22.2	14.2
RTML / MW	10.4	13.3	10.9	14.1	9.2
BDS / MW	9.3	9.3	9.3	9.3	9.3
Dumps / MW	1.2	1.2	1.2	1.2	1.2
IR / MW	5.8	5.8	5.8	5.8	5.8
Campus / MW	2.7	2.7	2.7	2.7	2.7
Gen. Margin/MW	3.3	4.0	1.8	2.1	2.3
Total	111	138	93	113	81

Summary of the ILC-91 Cryogenics Power

Finding and Comments:

- In <u>CR-021, ILC-91 (Z-pole) AC-power estimated by scaling from the ILC-500 (TDR) power estimate.</u>
- We generally agree with the <u>CR-021 values</u> to be appropriate, based on the linear scaling to the beam energy ratio.
- However, it is necessary to evaluate more in detail for the <u>cryogenics</u> operational efficiency, in partial (< ¹/₂) capacity operational mode, resulting in <u>lower efficiency</u> and requiring <u>more AC power</u>.

Recommendations:

- Improve the scaling process, in Excel calculations, with a proper fraction of half ML length (0.235),
 - For straight-forward power estimates in each sub-systems,
- Consider/resume <u>ML SCM (Q & D) power for CLs (≤ 1 % of total AC power</u>),
 - Enabling to be counted within 'margin' in total estimate.
- **Study** more in detail for the <u>possible lower power efficiency</u> in partial cryogenics capacity operation, inevitably required in ILC-91 (because of <u>all the CM string</u> needs to be operated <u>in lower gradient performance</u>).
- Take more redundant "general AC power margin" for enabling to absorb the less efficiency in the cryogenics
 - X 1.5 margin than that of ILC250 ($4.5\ 5$

Outline

- Introduction
- RF Power Evaluation
- Cryogenics Power Evaluation
- Summary

ILC-91 AC Power: General Summary

Energy	GeV	250	250 Lx2	91	91 Lx2	91 e driven	
Rep-Rate	Hz	5	5	3.7	3.7	5	•
Bunches	/Pulse	1312	2625	1312	2625	1312	
Lumi	10 ³⁴	1.35	2.7	0.21	0.41	0.28	
Gradient	MV/m	31.5	31.5	8.8	8.8	8.8	
Q ₀	1010	1.0	1.0	1.0	1.0	1.0	
ML E-gain	GeV	220	220	61.2	61.2	61.2	
ML RF		24.4	25.9	13.0	19.3	4.8	
ML Cryo		15.4	13.1	10.4	11.5	7.1	
ML-CF		10.3	14.6	7.5	8.5	5.5	
ML-sum		50.1	53.5	30.9	39.3	17.4	
e- Src		4.9	5.6	5.5	6.6	4.5	•
e+ Src		9.3	10.2	9.0	9.6	<u>24.8</u>	
DR	MW	14.2	22.2	15.7	22.2	14.2	
RTML		10.4	13.3	10.9	14.1	9.2	
BDS		9.3	9.3	9.3	9.3	9.3	
Dumps		1.2	1.2	1.2	1.2	1.2	
IR		5.8	5.8	5.8	5.8	5.8	•
Campus		2.7	2.7	2.7	2.7	2.7	
Margin (+SCM)		3.3	<u>4.0</u>	<u>4.3</u>	<u>5.2</u>	<u>4.2</u>	
Total	MW	111	<u>128</u>	<u>95</u>	<u>116</u>	<u>93</u>	
(Margin/Total)	(%)	(3)	(3)	(4.5)	(4.5)	(4.5)	
Note			Updates su	ggested are	underline	<u>d</u>	

Notes:

- General Power estimate
 - The review panel generally agree with the ILC-91 AC Power estimate given by CR-021, with some comments/advices.
 - Excel-sheet estimate process may be simplified and straight forward, by using the practical linac L fraction.

ML-RF power

 * The AC power related to ML RF is revised based on the configuration defined in CR19 (Z-pole luminosity) and confirmed.

ML-Cryogenic

- Powers estimate for ILC91 has been confirmed by using the scaling laws in particular for dynamic losses as functions of Gradient, pulse periods, Linac Length etc.
- ML SC magnet (SCM-CL) AC power (< 1 % of total) is absorbed within general margin.

e+ Source

• Power estimation for the electron-driven scheme is also added and confirmed.

Margin: includes ML-SCM & General Margin

• More margin reserved/suggested for ILC-91, at present stage.

22

Appendix

Reference 1

11.6.4 Electrical

Electrical load tables were compiled for each area and the systems designed. The ML has about 70% of the total loads. The conventional loads are from the components associated with running support facilities for the experimental equipment and facilities, such as pumps, fans and other mechanical/electrical systems not provided by the experiment. The power-factor value used for equipment sizing is the actual expected, if given, or a 90% for all other equipment. Table 11.17 shows a summary of the power loads distributed by component and Accelerator section.

Table 11.17

Summary of power loads (MW) by Accelerator section. 'Conventional' refers to power used for the utilities themselves. This includes water pumps and heating, ventilation and air conditioning, (HVAC). 'Emergency' power feeds utilities that must remain operational when main power is lost.

			1000			10000	\square	
	Accelerator section	RF	RF	NC magnet		Con	ventional	
		Power	Racks	& Power supplies	Стуо	Normal Ioad	Emergenc load	y Total
	e ⁻ source	1.28	0.09	0.73	0.80	1.02	0.16	4.08
-	e ⁺ source	1.39	0.09	4.94	0.59	2.19	0.35	9.56
	Damping Ring	8.67	I I	2.97	1.45	1.84	0.14	15.08
	RTML	4.76	0.32	1.26	part of ML cryo	0.12	0.14	6.59
	Main Linac	58.1	4.9	0.914	32	8.10	5.18	109.16
	BDS			10.43	0.41	0.24	0.28	11.36
	Dumps					1		1.00
	IR			1.16	2.65	0.09	0.17	4.07
	Total	74.2	5.4	22.4	37.9	14.6	6.4	161
			<u>`</u>			`		

24

ILC-500 (TDR) Cryogenics Plant Power

 Table 3.12. ILC cryogenic plant sizes (also includes sources, damping rings and beam delivery section for completeness) [47].

 Ref: ILC-TDR-3-II

Area	# of Plants	Installed Plant Size (each) (MW)	Total Installed Power (MW)	Operating Power (each) (MW)	Total Operating Power (MW)
Main Linac + RTML flat/mntn	12 / 10	3.37 / 4.16	40.44 / 41.60	2.63 / 3.24	31.56 / 32.40
Positron Source	1	0.65	0.65	0.35	0.35
Electron Source	1	0.70	0.70	0.48	0.48
Damping Rings	1	1.45	1.45	1.13	1.13
BDS	1	0.41	0.41	0.33	0.33
Experiments	1	1.00	1.00	0.70	0.70
Total	17 / 15		44.65 / 45.81		34.55 / 35.39

Total operating power for one cryo unit based on predicted heat (MW)	3.24	X 10
Total operating power for one cryo unit including uncertainty factor (MW)	3.57	X 10 (applied in ILC250 ~)
Total installed power for one cryo unit (MW)	4.16	
Total installed 4.5 K equivalent power for one cryo unit (kW)	19.01	

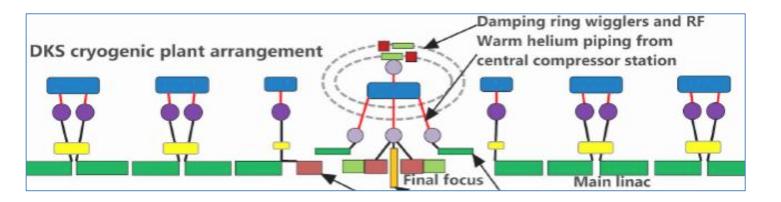
Ref: ILCCryoTDP014Oct291/2Blexds,t TDR Power DKS

ILC AC-plug Power and CF Fraction

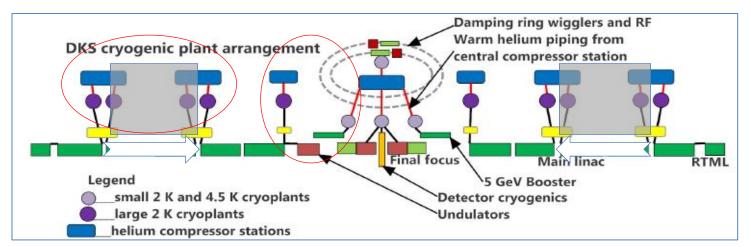
A.Yamamoto. 200703 Update: 211220

in comparison of ILC-500 (TDR) and ILC-250 (Baseline)

	ILC-500 Total Power	ILC-500 CF Power (Fraction)	ILC-250 Total Power	ILC-250 CF Power (Fraction)	
e- source	4.9	2.0	4.9	2.0	
e+ source	9.3	2.3	9.3	2.3	
DR	15.7	2.6	14.2	2.4	
RTML	10.4	2.0	10.4	2.0	
Main Linac (ML)	104.1	16.4	50.3	7.9	
BDS	12.4	1.5	9.3	1.1	
Beam Dump	1.2	1.2	1.2	1.2	
IR	5.8	1.9	5.8	1.9	
Main Campus			2.7	0.5	
General Margin			3.3	0.7	
Sum	164	30	111	22	
References, or Comments	ILC-TDR baseline (2013-6), updated, CR0021 (BL, 200630)	ILC TDR Cost-Rev. Rep. CFS (A. Enomoto, 2013-2-6)	ILC TDR-CR0018, Final, (BL-AY, 19123)	* Personal estimate by AY, scaled from ILC-500 to -250.	


Notes: Conventional Facility (CF) Power includes electrical network, cooling-water system, ventilation in acc. tunnel, and emergency power. ML total includes RF and Cryogenics in large fraction.

ILC250 Parameter Updates: References


reported by Shin Michizono, at SnowMass'21, AF-EF Joint Meeting Day 1, 24 June, 2020.

[·•	LINEAR COLLIDER COLLABORATION References	ilt								
	[1] TDR									
	https://ilchome.web.cern.ch/publications/ilc-technical-design-report									
	https://arxiv.org/ftp/arxiv/papers/1306/1306.6328.pdf [2] "The International Linear Collider Machine Staging Report 2017", Nov. 2017:									
	https://arxiv.org/ftp/arxiv/papers/1711/1711.00568.pdf									
	[3] "Recommendations on ILC Project Implementation"									
	https://www.kek.jp/en/newsroom/2019/10/02/1000/									
	https://www2.kek.jp/ilc/en/docs/Recommendations_on_ILC_Project_Implementation.pdf									
	[4] "Operation of ILC250 at the Z-pole", Jan. 2020: https://arxiv.org/abs/1908.08212									
	https://agenda.linearcollider.org/event/8389/contributions/45113/attachments/35257/54621/ILC-CR-0019.pdf									
_	[5] "Luminosity Upgrades for ILC", Aug.2013: https://arxiv.org/abs/1308.3726									
	[6] "Updated power estimate for ILC-250", Dec.2019									
	https://edmsdirect.desy.de/item/D0000001169675									
	[7] "Summary of the ILC Advisory Panel's Discussions to Date after Revision" (MEXT, Japan):									
	http://www.mext.go.jp/component/b_menu/shingi/toushin/icsFiles/afieldfile/2018/09/20/1409220_2_1.pdf									
	[8] European Strategy Input and its supporting document									
	https://ilchome.web.cern.ch/content/ilc-european-strategy-document									
	https://indico.cern.ch/event/765096/contributions/									
	https://indico.cern.ch/event/765096/contributions/3295702/									
	https://arxiv.org/pdf/1903.01629.pdf									
	[9] "Green ILC project," http://green-ilc.in2p3.fr/home/ (2018).									
	24 June 2020 Snowmass AF-EF Meet 2020 16 CR-021 Review Report	i								

ILC Cryog. Configuration to be staged at 250 GeV Option D (ML installed, downstream)

Staging at 250 GeV : **3** plants/linac, although the cooling power requirements to be reduced down to ~70 %.

ILC Cryogenics System Configuration

T. Peterson, ILCCryTDP-140ct2012BL.xlx, Oct. 14, 2012

26-Jun-12	2 K total heat	5 K total heat	40 K total heat	Installed power	installed power for reference	power ratio	total number of cryogenic plants	total installed plant power
		(Watts per cryomodule, not including other heat)		(MW per cryoplant)	(MW per cryoplant)	new/RDR	of this size	(MW)
for reference: RDR	11.37	14.93	153.48	4.29	4.29	1.00	10	42.9
for reference: RDR revised	11.37	17.87	157.99	4.48	4.29	1.05	10	44.8
TDR KCS for ML + RTML	11.11	15.86	133.84	3.37	4.29	0.79	12	40.5
TDR DKS for ML + RTML	11.11	15.86	133.84	4.16	4.29	0.97	10	41.6
e+ 5 GeV source	9.29	20.20	169.26	0.65	4.29	0.15	1	0.65
e- 5 GeV source	12.19	21.83	195.75	0.70	4.29	0.16	1	0.70

ILC-ML Cryogenics Thermal/Power Balance T. Peterson, ILC_TDP_CryogenicsCosts-6July2012_gdmod (Version1).xls

		40-80 K	5-8 K	2 K					
Predicted module static heat load	(W/module)	75.04	10.82	1.32					
Predicted module dynamic heat load	(W/module)	58.80	5.05	9.79					
Number of cryomodules per cryogenic unit		189.00	189.00	189.00					
Non-module heat load per cryo unit	(kW)	1.10	0.22	0.22					
Total predicted heat per cryogenic unit	(kW)	26.40	3.22	2.32					
Efficiency (fraction Carnot)		0.28	0.24	0.22					
Efficiency in Watts/Watt	(W/W)	16.45	197.94	702.98					
Overall net cryogenic capacity multiplier		1.54	1.54	1.54					
Heat load per cryogenic unit including multiplier	(kW)	40.65	4.96	3.57					
Installed power	(kW)	668.54	981.07	2511.22					
Installed 4.5 K equiv	(kW)	3.05	4.48	11.47					
Percent of total power at each level		0.16	0.24	0.60					
Total operating powe	Total operating power for one cryo unit based on predicted heat (MW)								
	Total installed	d power for one o	cryo unit (MW)	4.16					
Total instal	led 4.5 K equivaler	nt power for one	cryo unit (kW)	19.01					

Jpdated:	170724 2000 (2		() off	erts	on	the SR	F Cryog	enic Sv	stems		MILC	%
Olue	5118 (2	.50 00	v / CII						500115	e-, 2+	2 x 32.5	2 x 4.8
Elec	tron Linac	PM-12		PM-10		PM-8		E = 31.5 MV/m, a +V/cavity = 32.7	nd L-eff = 1.0385 m MV	DR	26.0	3.9
RTML	tot.	2.5m 2446.2n	n 2446.2 0			2446.2m coll. se	ct e+ source	+V/st-Cryogenics 53.6 GeV) = 3 x 21 x 0.8505 =	RTML (unit)	38.1 19.1	5.6 (2.8)
Short Cold E ML ur Cryon	t strings 95 1 boxes 90 1 nits 285 3 modules 855 9	11 21 10 20 33 63 99 189 22 42	21 20 63 189 42	2: 20 6: 18 4:	0 3 39	21 20 63 189 42		+V/short-string = +V/MLU = 32.71 x		ML (unit)	526.9 (58.54)	78.1 (8.6)
Beam	Beam Energy 15 42.9 96.3 149. ← 1286.4m → ← 4907.8m →				203 — 4907.	1		MLU) = $3 \times 37.956 +$		BDS	18.4	2.7
	<			11188.1m				RF unit (4.5 CM) length = 56.934 MLU blength (\rightarrow 3 CM) = 3×12.65		Sum	674.6	100
		RT ML- PM PM ML- CM -12 -12 ML-CM BC CM -u -d		CM -10 -u	PM -10 ML -d	37.956 m CM length = 12.65 -u	i2 m (pitch) -d r	Sum	Cos Dov			
	Cryo-Cost	19.05 +	29.27	58.54	1	58.54	58.54	58.54	32.54*	315.02	n/a	а
TDR	# C-Plant	~ 0.2 + 0.5 1	= 0.7 →	1		1	1	1	> ~ 0.55*	5.5 systems	3	
500	CP-Power	(19 kW @	4.5 K)	19 kW @ K	4.5	19 kW @ 4.5 K	19 kW @ 4.5 K	19 kW @ 4.5 K				

189

53.6

189

53.6

CM

E. Sum

51

10

99

28.1

			RT ML- BC	ML- CM	PM - 10 -u	-12 -d	ML·	-CM	-10 -u	PM -10 -d	ML	-CM	PM -8 -u	PM -8 -d	e+ Booster	Sum	
		Cryo-Cost	19.	.05 + 29.2	27					58.54		58.54		32.54*		197.94	0
Stag e-		# Cryo-P.	~0.2 +	- 0.5 = 0.	7 → 1						1	1		~ 0.55		3.5 systems	
250		# CM	51	45							189	189			24	498	
31.5M V/m 1E10	Л	E. Sum	10	12.8							53.6	53.6			5	135.0	
Stag	5	Cryo-Cost					58.54		= $0.88 \rightarrow 1$ ad to ~ 70%, because of high-			58.54 + 13 (for long distribution)				130	- 68
e- 250 +SR F		# C-Plant	(TL re	duction	0.7 x model:	(0.2 +) relative	0.05 + 1 ly lower Q)) = 0.88 ed to ~				0.7 x (1+0.13) + x= 0.79 + ~0.x → 1				2 systems	
2022/4/19 35MV	/	# CM & (relative TL)	51	4.5				CR	-0 <u>21</u> Re	eview F	Re 189 (132)	189 (132)			24 (17)	457.5	

189

53.6

189

53.6

930

257.5

31

24

5

Tom Peterson

ILC Cryogenic Power Estimates

26-Jun-12 This sheet: TDR Power DKS

1 standard cryogenic unit with DKS arrangement into cryo strings and cryo units Heat loads per attached CM_HeatLoad sheet (sheet 1) Module length based on Module-9-8-9-21Nov06.xls

T. Peterson, ILCCryTDP-140ct2012BL.xlx, Oct. 14, 2012

approximate cryogenic unit length (km)

2.434

Total heat load (dynamic plus static) for 9-8-9 RF units, full cryogenic unit

			5 K to 8 K Temperature level (module)	2 K Temperature level (module)	Assumptions: Module length based on Module-9-8-9-21Nov06.xls 12668 mm slot length for module with magnets and BPM
Temp in	(K)	40.00	5.0		12668 mm slot length for module without magnets and BPM
Press in	(bar)	16.0	5.0		189 modules in this cryogenic unit (longest anticipated)
Enthalpy in	(J/g)	223.8	14.7		number of modules from cryogenics_parameters_DKS.xlsx
Entropy in	(J/gK)	15.3	3.9		
Temp out	(K)	80.00	8.0	2.0	Note: cells highlighted in yellow are independent variables, parameters that are entered
Press out	(bar)	14.0	4.0	saturated vapor	
Enthalpy out	(J/g)	432.5	46.7		
Entropy out	(J/gK)	19.2	9.1	12.58	
(40 K to 80 K	5 K to 8 K	2 K	
Predicted module static heat load	(W/module)	75.04	10.82		
Predicted module dynamic heat load	(W/module)	58.80	5.05	9.79	Heat loads per CM_HeatLoad sheet
Number of modules per cryo unit (9-8-9-cavity modules)		189.0	189.0		
Total module static heat per cryo unit	(kW)	14.18	2.04		
Total module dynamic heat per cryo unit	(kW)	11.11	0.95	1.85	
Non-module heat load per cryo unit	(kW)	1.10	0.22		
Total predicted heat per cryogenic unit	(kW)	26.40	3.22		
Total predicted mass flow per cryo unit	(g/s)	126.49	100.42		times 22 boxes per cryo unit
Ideal power based on total estimated heat	(kW)	121.6	152.9	358.7	
Heat uncertainty factor on static heat (Fus)		1.10	1.10		
Heat uncertainty factor on dynamic heat (Fud)	(1.140)	1.10	1.10		
Heat load per cryogenic unit including uncertainty	(kW)	29.04 139.14	3.54 110.46		
Mass flow per cryogenic unit including uncertainty	(g/s)				
Weighted ideal power	(kW)	133.7	168.2		
4.5 K equiv weighted power	(kW)	2.0	2.6		Cryoplant coefficient of performance (W/W)
Efficiency (fraction Carnot)		0.28	0.24		
Efficiency in Watts/Watt	(W/W)	16.4	197.9		TESLATDR: 17 168 588
Operating power based on predicted heat	(kW)	434.1	637.1	1630.7	XFEL: 20 220 870
Operating power including uncertainty	(kW)	477.5	700.8	1793.7	Industrial est: 16.5 200 700 adjusted eff to match thes ILC assumption: 16.4 197.9 703.0
Overcapacity factor (Fo)		1.40	1.40	1.40	Overcapacity factor is margin for off-optimal operation and control
Overall net cryogenic capacity multiplier		1.54	1.54	1.54	
Heat load per cryogenic unit including Fus, Fud, and Fo	(kW)	40.65	4.96		Vapor density (g/cc) 0.0007936 peak vapor velocity (cm/sec) 308.430253
Installed power	(kW)	668.5	981.1	2511.2	including uncertainty and overcapacity factors
Installed 4.5 K equiv	(kW)	3.1	4.5	11.5	2 K mass flow with all factors 172.9301808
Installed 4.5 K equiv per unit length	(W/m)	1.3	1.8	4.7	
Percent of total power at each level		16.1%	23.6%	60.4%	
Total operating power for one cryo unit based on predicted	heat (MW)		3.24		Operating power includes 1.2 overcapacity factor for control only
Total operating power for one cryo unit including uncertaint			3.57		Operating power includes 1.2 overcapacity factor for control only
Total installed power for one cryo unit (MW)			4.16		22.01 kW per module
Total installed 4.5 K equivalent power for one cryo unit (kW	n		19.01		F
Fraction of largest practical cryoplant per cryogenic unit	·			Review Re	
And a series of the series of				-Roviow Ro	

T. Peterson, ILC_TDP_CryogenicsCosts-6July2012_gdmod (Version1).xls

		-		10		0.00		<u> </u>			-
1.7.2.2.1.2	Main Linac cryogenic unit feed boxes (UFB)	8	each	10	\$	0.50	5.0			One in tunnel at supply end of each cryogenic unit	1
1.7.2.2.1.3	Main Linac string connecting boxes (SCB)	8	each	176		0.40	70.4	-		Between adjacent cryogenic strings	1
1.7.2.2.1.4	Main Linac cryo unit single end boxes (SEB)	8	each	2	\$	0.40	0.8		.1%	Low energy end of each linac	
1.7.2.2.1.5	Main Linac cryo unit double end boxes (DEB)	8	each	2	\$	0.50	1.0	0 0.	.2%	Between adjacent cryogenic units	1
1.7.2.2.1.6	Main Linac horizontal transfer lines and cold bypasses	11	m	2560	\$	0.008	20.4	8 3	.6%		1
1.7.2.2.1.7	Main Linac warm helium gas header	14	km	23		0.7160	16.4			12" pipe	1
1.7.2.2.1.8	Undulator cryogenic transfer lines	13	m	300	Š	0.001	0.3			In the second se	4
1.7.2.2.1.8		9		3	ŝ	0.001	1.5	-	3%	Ondulator is cooled by a ML plant and cooling costs included with ML	4
	Undulator cryogenic distribution and end boxes	9	each	2	3	0.50					4
1.7.2.2.2	RTML cryogenic distribution						\$ 8.			Reference doc's: Module-9-8-9-21Nov06.xls	4
1.7.2.2.2.1	RTML RF cryogenic string connecting boxes	8	each	7	\$	0.40	2.8		.5%		1
1.7.2.2.2.2	RTML cryogenic transfer lines	11	m	500	\$	0.008	4.0	0 0.	.7%		1
1.7.2.2.2.3	RTML SC magnet connecting boxes	9	each	3	\$	0.50	1.5	i0 0.	.3%		1
1.7.2.2.3	Source cryogenic distribution						\$ 26.5	4 4	7%	Each source about 500 m total, with 280 m of modules and 50 m spin rotator	1
172231	Electron source cryogenic distribution boxes	10	each	1	\$	1.000	\$ 1.0	0 0	2%		
1.7.2.2.3.2	Electron source cryogenic end boxes	10	each	6	ŝ	1.000			.1%		1
1.7.2.2.3.3	Electron source transfer lines	10		694		0.008				00	4
			m							00 m within source, 394 m represents 3.5% reserve tunnel	4
1.7.2.2.3.4	Electron source warm helium gas header	14	km	1					.1%		4
1.7.2.2.3.5	Positron source cryogenic distribution boxes	10	each	1	\$	1.000		-	.2%		1
1.7.2.2.3.6	Positron source cryogenic end boxes	10	each	6	\$	1.00			.1%		1
1.7.2.2.3.7	Positron source cryogenic transfer lines	11	m	694	\$	0.008	\$ 5.5	5 1.	.0% 3	00 m within source, 394 m represents 3.5% reserve tunnel	1
1.7.2.2.3.8	Positron source warm helium gas header	14	km	1		0.7160	\$ 0.7	2 0.	.1%	· ·	1
1.7.2.2.4	Damping Ring cryogenic distribution			-	-		\$ 7.0	-		all 4.5 K plus 80 K helium thermal shield	1
1.7.2.2.4.1	Damping ring cryogenic distribution boxes	9	each	1	s	1.000	\$ 1.0	_		ne distribution box in tunnel near string ends	4
1.7.2.2.4.1				1		0.500					4
	Electron damping ring wiggler cryogenic end boxes	9	each	2	\$					ne wiggler string	4
1.7.2.2.4.3	Electron damping ring RF module cryogenic end boxes	9	each	2	\$	0.500	\$ 1.0	_		ne RF cryomodule string	4
1.7.2.2.4.4	Electron damping ring transfer lines	13	km	1	\$	1.000	\$ 1.0	-		urface piping from compressors plus tunnel piping and transfer lines	1
1.7.2.2.4.5	Positron damping ring wiggler cryogenic end boxes	9	each	2	\$	0.500	\$ 1.0	0 0.	.2% o	ne wiggler string	
1.7.2.2.4.6	Positron damping ring RF module cryogenic end boxes	9	each	2	\$	0.500	\$ 1.0	0 0.	.2% o	ne RF cryomodule string	1
1.7.2.2.4.7	Positron damping ring transfer lines	13	km	1	\$	1.000	\$ 1.0	0 0	2% 5	urface piping from compressors plus tunnel piping and transfer lines	1
1.7.2.2.5	Beam Delivery System cryogenic distribution				-		\$ 7.4			Assume one IR with push-pull detectors, keeping the RDR estimate	1
1.7.2.2.5.1	BDS cryogenic distribution systems	10	each	1	s	1.000		-	.2%	Assume one it's with push-pun detectors, keeping the KDK estimate	4
					•			_			4
1.7.2.2.5.2	BDS crab cavity cryogenic end boxes	9	each	4	\$	0.50			.4%		4
1.7.2.2.5.3	BDS final focus cryogenic end boxes	9	each	4	\$	0.50	\$ 2.0		.4%		1
1.7.2.2.5.4	BDS octupole cryogenic end boxes	9	each	4	\$	0.50		-	.4%		1
1.7.2.2.5.5	BDS transfer lines	13	m	400	\$	0.001	\$ 0.4	0 0.	.1%		1
1.7.2.2.5.6											1
											Fraction
	Main Linac and RTML cryogenic plants			1			\$ 32	1 1 22	881	\$ 403.71	
	Source cryogenic plants						\$ 29.2		1.1		
	Damping Ring cryogenic plants						\$ 15.7		1.1		
	Beam Delivery System cryogenics						\$ 7.4		881		
	Main Linac cryogenic distribution						\$ 121.	9 1.23	881	\$ 151.07	
	RTML cryogenic distribution						\$ 8.	3 1.23	881	\$ 10.28	
	Source cryogenic distribution						\$ 26.5	-	881		
	Damping Ring cryogenic distribution						\$ 7.0		881	·	
							-		881		
	Beam Delivery System cryogenic distribution					Ļ	\$ 7.4	1.25	001	ə 9.17	
								_			
							\$ 55)		\$ 675	
	By area system										
	Common										Labor (man-hrs)
	Electron Source										
	Positron Source									\$ 32.543	
	Damping Rings									\$ 32.543	<i>i</i>
	RTML								5	\$ 26.015	1
	Main Linac									38.138	
	BDS									526.928	
	IR									5 18.443	
	IIN III III III III III III III III III									- 18.443	

 \mathcal{C}

674.610

60% 5% 3% 1% 22% 2% 5% 1% 1%

100%

26,645 26,645 21,300

31,226 431,429 15,101 4.8% 4.8% 3.9%

5.7% 78.1% 2.7%

33