
Search for exotic long-lived particles at CLIC

Mateusz Goncerz Marcin Kucharczyk

motivation

- additional long-lived particles emerge in many BSM models
- Hidden Valley (HV) framework introduces them via *hidden* gauge sector
 - motivated by, among others, String Theory
 - communication either by overcoming the barrier in high-energy collisions or via massive messenger particles (ex. Z', Higgs)
 - decays of HV particles produce displaced vertices (DV)
 - ideal search for detectors like CLIC

introduction

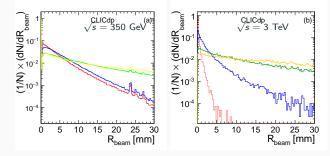
- initial study performed by Marcin Kucharczyk and Tomasz Wojtoń for $\sqrt{s} = 3$ TeV (CLICdp-Note-2018-001)
- current one adds results for $\sqrt{s} = 350$ GeV and provides a comparison (arXiv:2212.04147)
- focus on sensitivity of *CLIC_ILD* detector model to decays of HV pions with Higgs boson as the messenger $H \rightarrow \pi_v^0 \pi_v^0 \rightarrow b \bar{b} b \bar{b}$, assuming:
 - $m_{\pi^{\mathbf{0}}_{\nu}} \in (25, 35, 50)$ GeV, $\tau_{\pi^{\mathbf{0}}_{\nu}} \in (1, 10, 100, 300)$ ps
 - $BR(\pi_v^0 \to b\bar{b}) = 100\%$
 - $m_H = 126 \text{ GeV}$
- the dominant Higgs production mechanism assumed
 - $e^+e^-
 ightarrow H
 u_e ar{
 u_e}$, $\sigma=$ 0.42 pb at $\sqrt{s}=$ 3 TeV
 - $e^+e^-
 ightarrow {\it HZ}(
 ightarrow qar q)$, $\sigma=0.93$ pb at $\sqrt{s}=350$ GeV
- assumed integrated luminosities
 - 3 ab^{-1} at $\sqrt{s} = 3$ TeV
 - 1 ab^{-1} at $\sqrt{s} = 350$ GeV
- custom seeding algorithm to improve signal-background separation combined with multivariate analysis

samples – signal

		$\sqrt{s} = 350 { m GeV}$		$\sqrt{s} = 3 \text{ TeV}$	
$m_{\pi_v^0}[\text{GeV}]$	$ au_{\pi_v^{o}}[ps]$	σ [pb]	sample size	σ [pb]	sample size
25	1	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
25	10	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
25	100	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
25	300	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
35	1	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
35	10	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
35	100	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
35	300	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
50	1	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
50	10	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
50	100	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$
50	300	0.93	$\sim 240 { m K}$	0.42	$\sim 200 { m K}$

- beam induced $\gamma\gamma \rightarrow$ hadrons overlayed for each event

samples - background

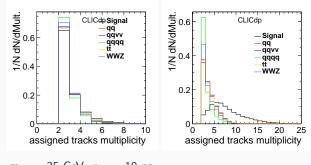

	\sqrt{s} =	= 350 GeV	\sqrt{s}	= 3 TeV
background process	σ [pb]	sample size	σ [pb]	sample size
qq	24.41	$\sim 2 { m M}$	2.95	$\sim 200 { m K}$
$qar{\mathrm{q}} uar{ u}$	0.32	$\sim 306 { m K}$	1.32	$\sim 200 { m K}$
qqqq	5.85	$\sim 1.44 { m M}$	0.55	$\sim 750 { m K}$
$q ar{\mathrm{q}} q ar{\mathrm{q}} u ar{ u}$		-	0.07	$\sim 300 { m K}$
tī	0.45	$\sim 241 { m K}$		-
WWZ	0.01	$\sim 40 { m K}$		-

• more than 4 jets omitted due to low cross-section • beam induced $\gamma\gamma \rightarrow$ hadrons overlayed for each event

5

reconstruction of DVs

• vertices of π_v^0 decays are displaced from the beam axis



 $m_{\pi^{0}_{v}}=$ 50 GeV, $au_{\pi^{0}_{v}}=$ 1 (red), 10 (blue), 100 (green), 300 (yellow) ps

- LCFI+ (Linear Collider Flavour Identification) algorithms for SV reconstruction were found to be inefficient
 - · designed primarily for B and D hadron decays
 - too few charged tracks assigned to displaced vertices
 - hindering signal-background separation, especially in 1 ps samples

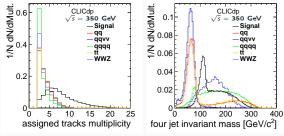
reconstruction of DVs - modified approach

- reconstruct tracks and jets (6 for $\sqrt{s}=350~{\rm GeV}$ and 4 for $\sqrt{s}=3~{\rm TeV})$ using standard methods
 - longitudinally invariant k_t (FastJet), tagging based on BDT
 - optimized for HV particles (jet radius, requirements on impact parameter components etc.)
 - see CLICdp-Note-2018-001 for details
- perform manual seeding to find $\pi^0_{
 m v}
 ightarrow bar{b}$ vertex candidates
 - consider good quality charged tracks not coming from PV
 - $IP/\sigma_{IP} > 16$
 - find base track with at least 4 close tracks assigned
 - DOCA < 1 mm
 - for each pair of tracks in this set, calculate their POCA
 - assign additional tracks with DOCA to POCA less than 1 mm
 - look for new base track and repeat untill no tracks left
- perform a standard SV reconstruction based on the impact parameter wrt. the seed positions determined in previous step

 $m_{\pi_v^{\mathbf{0}}}=$ 35 GeV, $au_{\pi_v^{\mathbf{0}}}=$ 10 ps

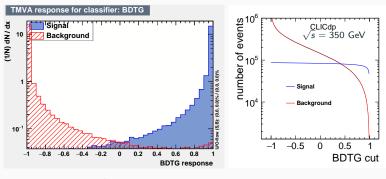
- number of charged tracks assigned to SVs using standard algorithms (left) and our modified approach (right)
- clear signal-background separation introduced

- to match signal signature, we require events to have
 - at least two DVs
 - at least 4 jets with b-tag probability of at least 0.95
- as the jet reconstruction algorithm does not provide any information on position, they are assigned to vertices in a way that maximizes the number of common charged tracks
- this matching is used to reconstruct di-jets (π_v^0) and four-jet (Higgs)
- at $\sqrt{s}=350~{\rm GeV},$ the two remaining jets are used to reconstruct Z boson candidate


signal-background separation

• the pre-selection requirements are very effective at suppressing the backgrounds

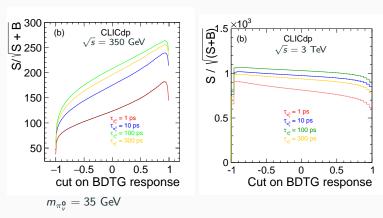
		$\sqrt{s} =$ 350 GeV	$\sqrt{s} = 3 \text{ TeV}$
$m_{\pi_V^{\textstyle 0}} \text{ [GeV]}$	$\tau_{\pi_V^{\textbf{0}}} \text{ [ps]}$	Eff. ^{presel} . [%]	Eff. ^{presel} . [%]
25	1	78	68
25	10	94	86
25	100	99	93
25	300	97	80
35	1	76	70
35	10	93	86
35	100	99	94
35	300	98	82
50	1	72	72
50	10	89	89
50	100	99	90
50	300	99	86


	$\sqrt{s}=$ 350 GeV	$\sqrt{s} = 3$ TeV
background process	Eff. ^{presel} . [%]	Eff. ^{presel} . [%]
qq	12	6
$\mathbf{q}\bar{q}\nu\bar{\nu}$	12	8
qqqq	8	9
$\mathbf{q}\bar{q}\mathbf{q}\bar{q}\nu\bar{\nu}$	-	11
ŧī	12	-
WWZ	14	-

- further separation is achieved using a multivariate analysis
- a decision tree (BDTG) is trained to distinguish between signal and background events using physical variables with good separation:
 - DV, di-jet and four-jet mass
 - DV and their assigned tracks multiplicity
 - distance at which the transitions from 3 to 2-jet and from 4 to 3-jet event takes place
 - effective against backgrounds with different jet number
 - Z candidate mass (at $\sqrt{s} = 350$ GeV)

 $m_{\pi^{\mathbf{0}}_{v}}=$ 35 GeV, $au_{\pi^{\mathbf{0}}_{v}}=$ 10 ps

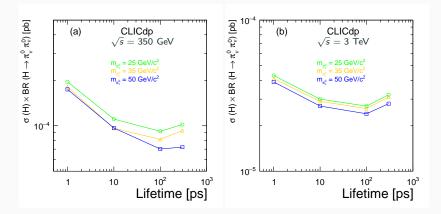
- each signal sample is treated independently
- backgrounds are combined with weights based on their cross-section and pre-selection efficiency



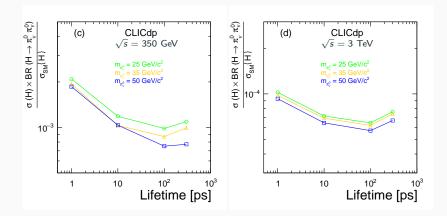
$$m_{\pi_v^0} = 35$$
 GeV, $\tau_{\pi_v^0} = 10$ ps

• number of events normalized to assumed total luminosity

sensitivity


• the threshold value is chosen to maximize sensitivity $S/\sqrt{S+B}$

- sensitivity roughly 4-6 times larger at $\sqrt{s}=3~{\rm TeV}$
 - bear in mind different luminosities
 - consistent across all $m_{\pi_v^0}$ masses


upper limits

- derived using CL(s) at 95% CL
- assuming absence of signal observation

- slightly higher at $\sqrt{s} = 350$ GeV, but same order of magnitude
- much better than existing experiments (orders of $10^0 10^2$)

normalized to Higgs production cross-section

• an order of magnitude higher at $\sqrt{s} = 350$ GeV

- the sensitivity of CLIC_ILD detector to long-lived HV particles was studied for the first ($\sqrt{s} = 350$ GeV) and last ($\sqrt{s} = 3$ TeV) stage of CLIC operation, assuming 1 and 3 inverse attobarns of collected data respectively
- the standard algorithm is not efficient enough in assigning charged tracks to vertices displaced from the beam axis
- the proposed modified approach mitigates these problems and allows for very good signal-background separation, when combined with multivariate analysis methods
- the resulting upper limits on Higgs production cross-section times the branching ratio to HV pions are many orders of magnitude better than achievable in current experiments